EE-464 STATIC POWER CONVERSION-II

Bridge Converters

Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586

Full Bridge Isolating Converter

Compact solution for high power levels (>500W)

Similar to push-pull converter

Full Bridge Converter: Operating Modes

Full Bridge Converter: Operating Modes

S1 & S2, S3 & S4 operate alternatively

Full Bridge Converter: Operating Modes

Full Bridge Converter

$$V_o=2V_s(rac{N_s}{N_p})D$$

D < 0.5

Same with the push-pull converter

Half Bridge Isolating Converter

Derived from the Buck Converter

S1, S2 turned on alternatively each for t_{on} , then both off for Δ $^{6/48}$

Half Bridge Converter: Operating Modes

7 / 48

Half Bridge Converter: Operating Modes

Half Bridge Converter

$$V_o = V_s(rac{N_s}{N_p})D$$

D < 0.5

Half of the push-pull converter

• Voltage Source Inverter (VSI): Fed by a voltage source (i.e. a capacitor large enough)

- Voltage Source Inverter (VSI): Fed by a voltage source (i.e. a capacitor large enough)
- Current Source Inverter (VCI): Fed by a current source (i.e. an inductor large enough)

Fed with constant source current (due to large source inductance)

Same with push-pull, but the inductance moved to the source side 12/48

Voltage Source Converter:

Do not turn both switches ON (to prevent shortcircuit)

Voltage Source Converter:

Do not turn both switches ON (to prevent shortcircuit)

Current Source Converter

Do not turn both switches OFF (to prevent opencircuit)

Current Source Converter: Operating Modes

Notice the overlapping periods between switches

Current Source Converter: Operating Modes

Diode currents are added at the output

$$V_o=V_s(rac{N_s}{N_p})(rac{1}{2(1-D)})$$

D > 0.5

Operates as a: Boost Converter

Multi-Quadrant DC Converters

First Quadrant Converter

(Type A Chopper)

18/48

Second Quadrant Converter

(Type B Chopper)

19/48

Two Quadrant Converter

(Type C Chopper)

First and Fourth Quadrant Converter

21/48

Full-Bridge (Four Quadrant) DC-DC Converter

Simplified Circuit

Full-Bridge (Four Quadrant) DC-DC Converter

Suitable for four quadrant operation

Control of Full-Bridge Converter

- . Bi-polar Voltage Switching
- . Uni-polar Voltage Switching

 T_{A+} and T_{B-} are turn on and off together

 T_{A-} and T_{B+} are complimentary of T_{A+} and T_{B-}

Output can be $+V_d$ or $-V_d$

$$V_o = V_d rac{v_{control}}{\hat{V}_{tri}}$$

 T_{A+} and T_{B+} are controlled seperately

 T_{A-} and T_{B-} are complimetary of T_{A+} and T_{B+}

 T_{A+} and T_{B+} are controlled seperately T_{A-} and T_{B-} are complimetary of T_{A+} and T_{B+} Output can be $+V_d$ or 0 or $-V_d$ $V_o = 0$ if T_{A+} and T_{B+} are ON $V_o = 0$ if T_{A-} and T_{B-} are ON

30/48

31/48

$$V_o = V_d rac{v_{control}}{\hat{V}_{tri}}$$

$$V_o = V_d rac{v_{control}}{\hat{V}_{tri}}$$

So, what's the point?

Ripple Comparison

Homework: Mohan Example 7.4

a) Bipolar PWM, b) Unipolar PWM

Dead Time (Blanking Time)

Off periods are added to compensate with non-zero turn-off time

Dead Time

Introduces non-linearity between Vref and Vo.

Pulses shorter than dead-time will be omitted (introduce harmonics)

Vref can be increased to compensate for the off period.

Full Bridge as a DC Converter

Operate it with Constant Reference Voltage

Full Bridge as an Inverter

Full Bridge as an Inverter

Just change the reference voltage with a sinusoid

37 / 48

Full Bridge as an Inverter

Will be covered in detail in the following weeks

Power Factor Correction

Power Factor Correction

Power Factor of a 1Ph Diode Rectifier?

Power Factor Correction

Power Factor of a 1Ph Diode Rectifier?

Diode Rectifier

Source current

40 / 48

• Computer Power Supplies, LED Drives

- Computer Power Supplies, LED Drives
- Arc Furnaces

- Computer Power Supplies, LED Drives
- Arc Furnaces
- Welding

Drawing

PFC Circuit

PFC Circuit

42 / 48

Critical Current Mode (Discontinuous Current Mode)

Critical Current Mode (Discontinuous Current Mode)

PFC Effect

PFC Effect

45 / 48

Commercial PFC Controllers

Commercial PFC Controllers

- Toshiba-TB6819AFG
- OnSemi PFC Controllers
- <u>TI PFC Controllers</u>
- <u>TI UCC28180</u>

PFC Application Study: Welding Circuit

PFC Application Study: Welding Circuit

You can download this presentation from: <u>keysan.me/ee464</u>