QRTA DOĒU TEKNIK ÜNivERSitesi
MIDDLE EAST TECHNICAL UNIVERSITY

ME 208 DYNAMICS

Dr. Ergin TÖNU̇K

Department of Mechanical Engineering
Graduate Program of Biomedical Engineering

$$
\begin{gathered}
\frac{\text { tonuk@metu.edu.tr }}{\text { http://tonuk.me.metu.edu.tr }}
\end{gathered}
$$

2.2 Rectilinear Motion

Motion along a straight line.

2.3 Plane Curvilinear Motion

Motion along a curved path in a single plane.
$\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}=\dot{\vec{r}}$
$\vec{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}=\dot{\vec{v}}=\ddot{\vec{r}}$

2.3 Plane Curvilinear Motion

Three different coordinate systems to analyze plane curvilinear motion are:

- Rectangular (Cartesian) coordinates

Normal-tangential (path) coordinates
Polar coordinates

2.4 Rectangular (Cartesian) Coordinates

$$
\begin{aligned}
& \vec{r}=x \hat{\imath}+y \hat{\jmath} \\
& \vec{v}=\dot{\vec{r}}=\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}=v_{x} \hat{\imath}+v_{y} \hat{\jmath} \\
& \vec{a}=\dot{\vec{v}}=\ddot{\vec{r}}=\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}=a_{x} \hat{\imath}+a_{y} \hat{\jmath}
\end{aligned}
$$

$$
|\vec{r}|, \theta=\operatorname{Pol}(x, y)
$$

$$
|\vec{v}|, \theta_{v}=\operatorname{Pol}\left(v_{x}, v_{y}\right)
$$

$$
|\vec{a}|, \theta_{a}=\operatorname{Pol}\left(a_{x}, a_{y}\right)
$$

Rectangular coordinates is the superposition of two rectilinear motions in two mutually perpendicular directions, x and y !
$2 / 75\left(4^{\text {th }}\right), 2 / 80\left(5^{\text {th }}\right)$, None $\left(6^{\text {th }}\right), 2 / 75\left(7^{\text {th }}\right), 2 / 76\left(8^{\text {th }}\right)$ The pilot of an airplane carrying a package of mail to a remote outpost wishes to release the package at the right moment to hit the recovery location A. At what angle θ with the horizontal should the pilot's line of sight to the target make the instant of release? The airplane is flying horizontally at an altitude of 100 m with a velocity of $200 \mathrm{~km} / \mathrm{h}$.

200 km/h

Free-fall (constant acceleration which is g) in vertical (say negative y-direction), constant speed travel in horizontal (say x-direction) when
 we neglect air friction on the package.
$y(t)=h-\frac{1}{2} g t^{2}$
$x(t)=v_{0} t$
$0=100-\frac{1}{2} 9.81 t^{2}$
$t=\sqrt{\frac{200}{9.81}}=4.51523641 \mathrm{~s} \cong 4.52 \mathrm{~s}$
$x=200 \mathrm{~km} / \mathrm{h} \frac{1000 \mathrm{~m} / \mathrm{km} 4.52 \mathrm{~s}=251 \mathrm{~m}}{3600^{\mathrm{S}} / \mathrm{h} 4.51523641 \mathrm{~s}}$
$r, \theta=\operatorname{Pol}(251,100)=270 \mathrm{~m}, 21.7^{\circ}$
Numerical accuracy versus round-off error accumulation.

Presenting Numerical Results:

Convention 1:
Always round numbers to three significant figures.
Examples:
$\sqrt{2} \cong 1.414213562 \ldots \rightarrow 1.41$
$3164 \mathrm{~m} \rightarrow 3.16 \mathrm{~km}=3.16 * 10^{6} \mathrm{~mm}$
Convention 2:
Numbers starting with a 1, use four significant figures, for other numbers use three significant figures.
Examples:
$\sqrt{2} \cong 1.414213562 \ldots \rightarrow 1.412$
$3164 \mathrm{~m} \rightarrow 3.16 \mathrm{~km}=3.16 * 10^{6} \mathrm{~mm}$

Free-fall (constant acceleration which is g) in vertical (say negative y-direction), constant speed travel in horizontal (say x-direction) when
 we neglect air friction on the package.
$y(t)=-\frac{1}{2} g t^{2}$
$x(t)=v_{0} t$
$-100=-\frac{1}{2} .81 t^{2}$
$t=\sqrt{\frac{200}{9.81}}=4.51523641 \mathrm{~s} \cong 4.52 \mathrm{~s}$
$x=200 \mathrm{~km} / \mathrm{h} \frac{1000 \mathrm{~m} / \mathrm{km}}{3600 \mathrm{~s} / \mathrm{h}} 4.52 \mathrm{~s}=251 \mathrm{~m}$
$r, \theta^{\prime}=\operatorname{Pol}(251,-100)=270 m,-21.7^{\circ}$

Free-fall (constant acceleration which is g) in vertical (say positive y-direction), constant speed travel in horizontal (say negative x direction) when we neglect air friction on the package.
$y(t)=\frac{1}{2} g t^{2}$
$x(t)=-v_{0} t$
$100=\frac{1}{2} 9.81 t^{2}$
$t=\sqrt{\frac{200}{9.81}}=4.51523641 \mathrm{~s} \cong 4.52 \mathrm{~s}$
$x=-200 \mathrm{~km} / \mathrm{h} \frac{1000^{\mathrm{m}} / \mathrm{km}}{3600^{\mathrm{s}} / \mathrm{h}} 4.52 \mathrm{~s}=-251 \mathrm{~m}$
$r, \theta^{\prime \prime}=\operatorname{Pol}(-251,100)=270 m, 158,3^{\circ}$

2.5 Normal \& Tangential Coordinates (Path Coordinates)

The normal and tangential coordinates move with the path, t along the direction of motion, tangent to the path, n normal to t towards center of curvature of the path.

2.5 Normal \& Tangential Coordinates (Path Coordinates)

$$
\begin{aligned}
& d s=\rho d \beta \\
& v=\frac{d s}{d t}=\rho \frac{d \beta}{d t}+\frac{d \rho}{d t} d \beta=\rho \frac{d \beta}{d t} \\
& \vec{v}=\rho \dot{\beta} \hat{e}_{t} \\
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(v \hat{e}_{t}\right)=\dot{v} \hat{e}_{t}+v \dot{\hat{e}}_{t}
\end{aligned}
$$

2.5 Normal \& Tangential Coordinates (Path Coordinates)

 $d \hat{e}_{t}=d \beta \hat{e}_{n}$$\dot{\hat{e}}_{t}=\frac{d \hat{e}_{t}}{d t}=\frac{d \beta}{d t} \hat{e}_{n}=\dot{\beta} \hat{e}_{n}$
$\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(v \hat{e}_{t}\right)=\dot{v} \hat{e}_{t}+v \dot{\hat{e}_{t}}$
$\vec{a}=\dot{v} \hat{e}_{t}+v \dot{\beta} \hat{e}_{n}$

$v=\rho \dot{\beta}, \dot{\beta}=\frac{v}{\rho}$
$\vec{a}=\dot{v} \hat{e}_{t}+\frac{v^{2}}{\rho} \hat{e}_{n}=a_{t} \hat{e}_{t}+a_{n} \hat{e}_{n}$

2/116 ($\left.4^{\text {th }}\right)$, None $\left(5^{\text {th }}\right)$, 2/ $116\left(6^{\text {th }}\right)$, None $\left(7^{\text {th }}\right)$, None $\left(8^{\text {th }}\right)$ A car travels along the level curved road with a speed which is decreasing at the constant rate of $0.6 \mathrm{~m} / \mathrm{s}$ each second. The speed of the car as it passes point A is $16 \mathrm{~m} / \mathrm{s}$. Calculate the magnitude of the total acceleration of the car as it passes point B which is 120 m along the road from A. The radius of curvature of the road at B is 60 m .
$\left|\vec{a}_{B}\right|=$?
$\dot{v}=a_{t}=-0.6 \mathrm{~m} / \mathrm{s}^{2}$
$a_{B_{n}}=\frac{v_{B}{ }^{2}}{\rho}$
$v_{B}{ }^{2}=v_{A}{ }^{2}+2 a s=16^{2}+2 *(-0.6) 120=112$
$v_{B}=10.58 \mathrm{~m} / \mathrm{s}$
$a_{B_{n}}=\frac{v_{B}^{2}}{\rho}=\frac{10.58^{2}}{60}=1.867 \mathrm{~m} / \mathrm{s}^{2}$
$\left|a_{B}\right|, \theta=\operatorname{Pol}\left(a_{t}, a_{B_{n}}\right)=1.960 \mathrm{~m} / \mathrm{s}^{2}, 162.2^{\circ}$

2/ 128 (4th), None (5th), 2/ 132 ($\left.6^{\text {th }}\right)$, None ($\left.7^{\text {th }}\right)$, 2/ 123 ($8^{\text {th })}$ During a short interval the slotted guides are designed to move according to $\mathrm{x}=16-12 \mathrm{t}+4 \mathrm{t}^{2}$ and $\mathrm{y}=2+15 \mathrm{t}-3 \mathrm{t}^{2}$, where x and y are in millimeters and t in seconds. At the instant when $t=2 \mathrm{~s}$, determine the radius of curvature, ρ, of the path of the constrained pin P.

$$
\begin{aligned}
& x=16-12 t+4 t^{2} \\
& \dot{x}=-12+8 t \\
& \ddot{x}=8 \\
& y=2+15 t-3 t^{2} \\
& \dot{y}=15-6 t \\
& \ddot{y}=-6 \\
& \vec{v}(t=2 s)=[(-12+8 * 2) \hat{\imath}+(15-6 * 2) \hat{\jmath}]=(4 \hat{\imath}+3 \hat{\jmath}) \mathrm{mm} / \mathrm{s} \\
& \hat{e}_{t}=\frac{\vec{v}}{|\vec{v}|}=\frac{4 \hat{\imath}+3 \hat{\jmath}}{5} \\
& \theta_{v}=36.87^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& x=16-12 t+4 t^{2} \\
& \dot{x}=-12+8 t \\
& \ddot{x}=8 \\
& y=2+15 t-3 t^{2} \\
& \dot{y}=15-6 t \\
& \ddot{y}=-6 \\
& \vec{a}=(8 \hat{\imath}-6 \hat{\jmath}) \mathrm{mm} / \mathrm{s}^{2} \\
& \theta_{a}=-36.87^{\circ} \\
& a_{n}=\frac{v^{2}}{\rho}=\frac{5^{2}}{\rho}=10 \sin \left(2 * 36.87^{\circ}\right)=9.60 \mathrm{~mm} / \mathrm{s}^{2} \\
& \rho=2.60 \mathrm{~mm}
\end{aligned}
$$

Alternative Method

Eliminate parameter t from x and y and apply the formula to obtain the same radius of curvature or use:
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$

2.6 Polar Coordinates

$$
\begin{aligned}
& \vec{r}=r \hat{e}_{r} \\
& \dot{\vec{r}}=\vec{v}=\dot{r} \hat{e}_{r}+r \dot{\hat{e}}_{r}
\end{aligned}
$$

Always tangent to the path!
$d \hat{e}_{r}=d \theta \hat{e}_{\theta}$
$\dot{\hat{e}}_{r}=\frac{d \hat{e}_{r}}{d t}=\frac{d \theta}{d t} \hat{e}_{\theta}=\dot{\theta} \hat{e}_{\theta}$
$\vec{v}=\dot{\vec{r}}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}$
$\vec{a}=\dot{\vec{v}}=\ddot{\vec{r}}=\ddot{r} \hat{e}_{r}+\dot{r} \dot{\hat{e}}_{r}+\dot{r} \dot{\theta} \hat{e}_{\theta}+r \ddot{\theta} \hat{e}_{\theta}+r \dot{\theta} \dot{\hat{e}}_{\theta}$

$d \hat{e}_{\theta}=-d \theta \hat{e}_{r}$
$\dot{\hat{e}}_{\theta}=\frac{d \hat{e}_{\theta}}{d t}=-\frac{d \theta}{d t} \hat{e}_{r}=\dot{\theta} \hat{e}_{r}$
$\vec{a}=\dot{\vec{v}}=\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{e}_{\theta}=a_{r} \hat{e}_{r}+a_{\theta} \hat{e}_{\theta}$

2/142 (4th), 2/ 144 ($\left.5^{\text {th }}\right)$, 2/ 155 ($6^{\text {th }}$), None ($7^{\text {th }}$), None ($\left.8^{\text {th }}\right)$ The slider P can be moved inward by means of the string S as the bar OA rotates about pivot O. The angular position of the bar is given by $\theta=0.4-0.12 \mathrm{t}+0.06 \mathrm{t}^{3}$ where θ is in radians and t in seconds. The position of the slider is given by $r=0.8-0.1 \mathrm{t}-0.05 \mathrm{t}^{2}$, where r is in meters and t in seconds. Determine and sketch the velocity and acceleration of the slider at time $t=2 \mathrm{~s}$. Find the angles α and β which \mathbf{v} and a make with positive x axis.

$$
\begin{aligned}
& \vec{v}=\dot{\vec{r}}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta} \\
& \vec{a}=\dot{\vec{v}}=\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{e}_{\theta}=a_{r} \hat{e}_{r}+a_{\theta} \hat{e}_{\theta} \\
& \theta(t)=0.4-0.12 t+0.06 t^{3} \\
& \dot{\theta}(t)=-0.12+0.18 t^{2} \\
& \ddot{\theta}(t)=0.36 t \\
& \theta(t=2 s)=0.640 \mathrm{rad} \equiv 36.7^{\circ} \\
& \dot{\theta}(t=2 \mathrm{~s})=0.60 \mathrm{rad} / \mathrm{s} \\
& \ddot{\theta}(t=2 \mathrm{~s})=0.72 \mathrm{rad} / \mathrm{s}^{2} \\
& r(t)=0.8-0.1 t-0.05 t^{2} \\
& \dot{r}(t)=-0.1-0.1 t \\
& \ddot{r}(t)=-0.1 \\
& r(t=2 \mathrm{~s})=0.4 \mathrm{~m} \\
& \dot{r}(t=2 \mathrm{~s})=-0.3 \mathrm{~m} / \mathrm{s} \\
& \ddot{r}(t=2 s)=-0.1 \mathrm{~m} / \mathrm{s}^{2} \\
& \vec{v}(t=2 s)=-0.3 \hat{e}_{r}+0.4 * 0.6 \hat{e}_{\theta}=\left(-0.3 \hat{e}_{r}+0.24 \hat{e}_{\theta}\right) \mathrm{m} / \mathrm{s} \\
& v, \theta_{v}=P o l(-0.3,0.24)=0.384 \mathrm{~m} / \mathrm{s}, 141.3^{\circ} \\
& \alpha=\theta+\theta_{v}=178^{\circ} \\
& \vec{a}=\left(-0.1-0.4 * 0.6^{2}\right) \hat{e}_{r}+(2 *-0.3 * 0.6+0.4 * 0.72) \hat{e}_{\theta} \\
& =\left(-0.24 \hat{e}_{r}-0.072 \hat{e}_{\theta}\right) \mathrm{m} / \mathrm{s}^{2} \\
& a, \theta_{a}=\operatorname{Pol}(-0.224,-0.072)=0.235 \mathrm{~m} / \mathrm{s}^{2},-162.2^{\circ} \\
& \beta=\theta+\theta_{a}=-125.5^{\circ} \text { or } 234,5^{\circ}
\end{aligned}
$$

2/ 142 (4th)
The hydraulic cylinder gives pin A a constant velocity $\mathrm{v}=$ $2 \mathrm{~m} / \mathrm{s}$ along its axis for an interval of motion and, in turn, causes the slotted arm to rotate about O. Determine the values of \dot{r}, \ddot{r} and $\ddot{\theta}$ for the instant when $\theta=30^{\circ}$.

$$
\begin{aligned}
& r=0.3 \mathrm{~m} \\
& v_{r}=\dot{r}=v \cos \left(30^{\circ}\right)=1.732 \mathrm{~m} / \mathrm{s} \\
& v_{\theta}=r \dot{\theta}=v \sin \left(30^{\circ}\right)=1 \mathrm{~m} / \mathrm{s} \\
& \dot{\theta}=\frac{v_{\theta}}{r}=\frac{1}{0.3}=3.33 \mathrm{rad} / \mathrm{s} \\
& \vec{a}=\overrightarrow{0} \rightarrow a_{r}=0 \text { AND } a_{\theta}=0 \\
& a_{r}=\ddot{r}-r \dot{\theta}^{2} \\
& \ddot{r}=r \dot{\theta}^{2}=0.3 * 3.33^{2}=3.33 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} \\
& \ddot{\theta}=\frac{-2 \dot{r} \dot{\theta}}{r}=\frac{-2 * 1.732 * 3.33}{0.3}=-38.5 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

2.7 Space Curvilinear (3-D) Motion

Rectangular (Cartesian) Coordinates ($\mathrm{x}-\mathrm{y}-\mathrm{z}$) $\vec{R}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
$\vec{v}=\dot{\vec{R}}=\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}+\dot{z} \hat{k}$
$\vec{a}=\ddot{\vec{R}}=\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath}+\ddot{z} \hat{k}$
Cylindrical Coordinates (r- $\theta-z$)
$\vec{R}=r \hat{e}_{r}+z \hat{k}$
$\vec{v}=\dot{\vec{R}}=\dot{r} \hat{e}_{r}+\dot{r} \theta \hat{e}_{\theta}+\dot{z} \hat{k}$
$\vec{a}=\ddot{\vec{R}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{e}_{\theta}+\ddot{z} \hat{k}$
Spherical Coordinates (R- $\theta-\phi$)
$\vec{R}=R \hat{e}_{R}$

Normal-Tangential (Path) Coordinates (n-t-b) $\hat{e}_{b}=\hat{e}_{t} \times \hat{e}_{n}$

