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3/86 (4th), 3/88 (5th), None (6th), 3/81 (7th), 3/85 (8th)

A small coin is placed on the horizontal surface of the

rotating disk. If the disk starts from rest and is given a

constant angular acceleration, , determine an expression

for the number of revolutions, N, through which the disk

turns before the coin slips. The coefficient of static friction

between the coin and the disk is s.



One may use n-t or r- coordinates. For circular motion 

since ሶ𝑟 = ሷ𝑟 = 0 they yield equivalent results (t = , r = -n). 

Let us use n-t:

𝐹𝑡 = 𝑚𝑎𝑡 = 𝑚𝑟𝛼

𝐹𝑛 = 𝑚𝑎𝑛 = 𝑚𝑟𝜔2 = 𝑚
𝑣2

𝑟

𝐹𝑓𝑚𝑎𝑥 = 𝜇𝑠𝑁 = 𝐹𝑛
2 + 𝐹𝑡

2

𝜇𝑠𝑚𝑔 = 𝑚𝑟 𝛼2 + 𝜔4

𝜇𝑠𝑚𝑔
2 = 𝑚2𝑟2 𝛼2 + 𝜔4

𝜔2 =
𝜇𝑠2𝑔2 + 𝑟2𝛼2

𝑟
For constant  similar to linear motion 𝜔𝑑𝜔 = 𝛼𝑑𝜃 can be 

integrated to get 𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0 and 𝜃 = 2𝜋𝑁 so

𝜇𝑠2𝑔2 + 𝑟2𝛼2

𝑟
= 4𝜋𝛼𝑁

𝑁 =
1

4𝜋

𝜇𝑠𝑔

𝑟𝛼

2

− 1

N

mg

𝐹𝑓𝑚𝑎𝑥
= 𝜇𝑠𝑁



𝑁 =
1

4𝜋

𝜇𝑠𝑔

𝑟𝛼

2

− 1

𝜇𝑠𝑔

𝑟𝛼

2

− 1 ≥ 0 → ቊ
𝛼𝑚𝑎𝑥

𝑟𝑚𝑎𝑥



PART I: PARTICLES

Chapter 3: Kinetics of Particles

There are three different approaches to the

kinetics problems:

A. Direct application of Newton’s Second

Law/Force-Mass Acceleration Method

B. Work – Energy Principles (integration of second

law with respect to displacement)

C. Impulse and Momentum Methods (integration

of second law with respect to time)



PART I: PARTICLES
Chapter 3: Kinetics of Particles
B. Work – Energy Principles

3.6 & 3.7 Work, Kinetic and Potential Energies

Newton’s second law establishes an instantaneous

relation between the net force and acceleration. To

determine the change in velocity or displacement, the

computed acceleration has to be integrated using

appropriate kinematic relations.

Integration of Newton’s second law with respect to

displacement yields work-energy relations where the

cumulative effect of net force on change of velocity of the

particle is directly obtained.



Work

By definition infinitesimal work is 

𝑑𝑈 = Ԧ𝐹 ∙ 𝑑 Ԧ𝑟
𝑑𝑈 = 𝐹𝑑𝑠𝑐𝑜𝑠𝛼 = 𝐹𝑡𝑑𝑠

𝑑𝑈൞

> 0, 𝐹𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
< 0, 𝐹𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑤𝑜𝑟𝑘 𝑏𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
= 0, 𝐹 𝑖𝑠 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑛𝑜 𝑤𝑜𝑟𝑘

𝑈 = න𝑑𝑈 = න
Ԧ𝑟0

Ԧ𝑟

Ԧ𝐹 . 𝑑 Ԧ𝑟

𝑈 = 𝐹 ∙ 𝐿 = 𝑁 ∙ 𝑚 ≡ 𝐽

𝑈 = න𝑑𝑈 = න𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧



Work done on a particle: Kinetic Energy

𝑈1→2 = න
1

2

Ԧ𝐹 ∙ 𝑑 Ԧ𝑟

𝑈1→2 = න
1

2

𝑚 Ԧ𝑎 ∙ 𝑑 Ԧ𝑟

𝑈1→2 = න
𝑣1

𝑣2

𝑚 Ԧ𝑣 ∙ 𝑑 Ԧ𝑣 =
1

2
𝑚 𝑣2

2 − 𝑣1
2

Recall first law of thermodynamics stating conservation of
energy. The work done on a particle of mass m is stored
as kinetic energy and can be fully recovered by bringing a
moving mass to a rest. Kinetic energy of a moving mass is
therefore defined as:

𝑇 =
1

2
𝑚𝑣2



Work done when deforming a Spring:
Elastic Potential Energy

𝑈1→2 = න
𝑥1

𝑥2

𝐹𝑠𝑑𝑥

𝑈1→2 = න
𝑥1

𝑥2

𝑘𝑥𝑑𝑥

𝑈1→2 =
1

2
𝑘 𝑥2

2 − 𝑥1
2

This work is stored in an ideal elastic spring as elastic potential
energy and can fully be recovered. Therefore elastic potential
energy stored in a spring having deformation x (compression or
tension does not matter) is defined as:

𝑉𝑒 =
1

2
𝑘𝑥2

Change in elastic potential energy of an elastic spring is:

∆𝑉𝑒=
1

2
𝑘 𝑥2

2 − 𝑥1
2



Work done against Gravity:
Gravitational Potential Energy

𝑈1→2 = න
Ԧ𝑟1

Ԧ𝑟2
Ԧ𝐹 ∙ 𝑑 Ԧ𝑟

𝑈1→2 = න
Ԧ𝑟1

Ԧ𝑟2

−𝑚𝑔𝑘 ∙ 𝑑𝑥 Ƹ𝑖 + 𝑑𝑦 Ƹ𝑗 + 𝑑𝑧𝑘

𝑈1→2 = −𝑚𝑔න
𝑧1

𝑧2

𝑑𝑧 = −𝑚𝑔 𝑧2 − 𝑧1

𝑈1→2 = 𝑚𝑔∆ℎ

Height change is positive when up (storing 
potential energy).

This energy stored due to height change is 
defined as the gravitational potential energy:
∆𝑉𝑔 = 𝑚𝑔∆ℎ



Principle of Conservation of Energy (First Law of
Thermodynamics)

𝑈1→2 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒

Power

Power is defined as rate of doing work or delivering
energy:

ℙ =
𝑑𝑈

𝑑𝑡
= Ԧ𝐹 ∙

𝑑 Ԧ𝑟

𝑑𝑡
= Ԧ𝐹 ∙ 𝑑 Ԧ𝑣

𝐽/𝑠 ≡ 𝑊

Mechanical Efficiency

𝑒𝑚 =
ℙ𝑜𝑢𝑡

ℙ𝑖𝑛
≤ 1

Actually it is always less than 1 due to second law of
thermodynamics.



Conservative Force Fields

In conservative force fields the work done is independent of
path but only a function of end positions. Some examples of
conservative force fields are gravitational and elastic forces. In
that case

𝑈 = ර Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 = 0

for any closed path. Further for conservative fields Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 is an

exact differential of a function, Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 = −𝑑𝑉 then

𝐹𝑥 = −
𝑑𝑉

𝑑𝑥
, 𝐹𝑦 = −

𝑑𝑉

𝑑𝑦
𝑎𝑛𝑑 𝐹𝑧 = −

𝑑𝑉

𝑑𝑧
𝑜𝑟 Ԧ𝐹 = −∇𝑉

where ∇= Ƹ𝑖
𝜕

𝜕𝑥
+ Ƹ𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧

V is known as potential function (Vg is gravitational potential

and Ve is elastic potential) and ∇𝑉 is the gradient of the
potential function.



3/140 (4th), None (5th), 3/145 (6th), None (7th), None (8th)

The 10 kg block is released from rest on the horizontal

surface at point B, where the spring has been stretched a

distance of 0.5 m from its neutral position A. The

coefficient of kinetic friction between the block and the

plane is 0.30. Calculate:

a. the velocity of the block as it passes point A,

b. the maximum distance x to the left of A which the 

block goes.



a.

𝐹𝑦 = 0,𝑁 −𝑚𝑔 = 0

𝑁 = 𝑚𝑔 = 10 ∗ 9.81 = 98.1 𝑁

𝜇𝑁 = 0.3 ∗ 98.1 = 29.4 𝑁

𝑈𝐵→𝐴 = ∆𝑇 + ∆𝑉𝑒

𝑈𝐵→𝐴 = −29.4 ∗ 0.5 = −14.715 𝐽

∆𝑇 =
1

2
𝑚 𝑣𝐴

2 − 𝑣𝐵
2 =

1

2
10 𝑣𝐴

2 − 02

∆𝑉𝑒 =
1

2
𝑘 𝑥𝐴

2 − 𝑥𝐵
2 =

1

2
300 02 − 0.52 = −37.5 𝐽

𝑣𝐴 = 2.13 𝑚/𝑠

Fs

N

N

mg x

y



b.

𝑈𝐴→𝐶 = ∆𝑇 + ∆𝑉𝑒 𝑜𝑟 𝑈𝐵→𝐶 = ∆𝑉𝑒

∆𝑇 =
1

2
𝑚 𝑣𝐶

2 − 𝑣𝐴
2 =

1

2
10 02 − 2.132 = −22.8 𝐽

∆𝑉𝑒 =
1

2
𝑘 𝑥𝐶

2 − 𝑥𝐴
2 =

1

2
300 𝑥𝐶

2 − 02

150𝑥2 + 29.43𝑥 − 22.785 = 0, 𝑥 = ቊ
−0.5 𝑚
0.304 𝑚

Since physics of friction force is not included in the

formulation of the problem as Ԧ𝐹𝑓 = −𝜇𝑁𝑠𝑔𝑛 𝑣 Ƹ𝑖 the

treatment is having a constant force in a fixed direction.

Therefore under the action of this constant force the mass

has two positions where it stops! It does not consider the

change in direction of the friction force when the direction

of motion of the block changes.

You could solve the same problem by applying Newton’s

second law directly, determining net force on the mass and

resulting acceleration and integrating.

Fs

N

N

mg x

y



3/148 (4th), 3/149 (5th), 3/153 (6th), 3/144 (7th), None (8th)

The spring of constant k is unstretched when the slider of

mass m passes position B. If the slider is released from

rest in position A, determine its speed as it passes points

B and C. What is the normal force exerted by the guide on

the slider at position C? Neglect friction between the mass

and the circular guide, which lies in the vertical plane.



𝑈𝐴→𝐵 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒

𝑈𝐴→𝐵 = 0

∆𝑇 =
1

2
𝑚 𝑣𝐵

2 − 𝑣𝐴
2 =

1

2
𝑚 𝑣𝐵

2 − 02

∆𝑉𝑔 = −𝑚𝑔𝑅

∆𝑉𝑒 =
1

2
𝑘 𝑥𝐵

2 − 𝑥𝐴
2

𝑥𝐴 = 𝑅2 + 𝑅2 − 𝑅 = 𝑅 2 − 1

∆𝑉𝑒 =
1

2
𝑘 02 − 𝑅 2 − 1

2

𝑣𝐵 = 2𝑔𝑅 +
𝑘𝑅2

𝑚
2 − 1

2



𝑈𝐴→𝐶 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒 𝑜𝑟 𝑈𝐵→𝐶 = ∆𝑇 + ∆𝑉𝑔

∆𝑉𝑔 = −𝑚𝑔𝑅

∆𝑇 =
1

2
𝑚 𝑣𝐶

2 − 𝑣𝐵
2

𝑣𝐶 = 4𝑔𝑅 +
𝑘𝑅2

𝑚
2 − 1

2

𝐹𝑛 = 𝑚𝑎𝑛 = 𝑚
𝑣𝐶

2

𝑅

𝑁𝐶 −𝑚𝑔 = 𝑚 4𝑔 +
𝑘𝑅

𝑚
2 − 1

2

𝑁𝐶 = 5𝑚𝑔 + 𝑘𝑅 2 − 1
2

NC

mg t
n



3/153 (4th), None (5th), 3/166 (6th), 3/158 (7th), None (8th)

The collar has a mass of 2 kg and is attached to the light

spring which has a stiffness of 30 N/m and an

unstretched length of 1.5 m. The collar is released from

rest at A and slides up the smooth rod under the action of

the constant 50 N force. Calculate the velocity of the

collar as it passes position B.



𝑈𝐴→𝐵 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒

𝑈𝐴→𝐵 = 50 ∗ 1.5 ∗ 𝑐𝑜𝑠30° = 64.95 𝐽

∆𝑇 =
1

2
𝑚 𝑣𝐵

2 − 𝑣𝐴
2 =

1

2
2 𝑣𝐵

2 − 02

∆𝑉𝑔 = 𝑚𝑔∆ℎ = 2 ∗ 9.81 ∗ 1.5 = 29.4 𝐽

∆𝑉𝑒 =
1

2
𝑘 𝑥𝐵

2 − 𝑥𝐴
2 =

1

2
30 𝑥𝐵

2 − 0.52

𝑥𝐵 = 𝓁𝐵 − 𝓁0 = 22 + 1.52 − 1.5 = 1 𝑚

∆𝑉𝑒 =
1

2
30 12 − 0.52 = 11.25 𝐽

𝑣𝐵 = 4.93 𝑚/𝑠



3/149 (4th), 3/151 (5th), 3/155 (6th), 3/149 (7th), None (8th)

The light rod is pivoted at O and carries the 2 and 4 kg

particles. If the rod is released from rest at  = 60° and

swings in the vertical plane, calculate (a) the velocity of

the 2 kg particle just before it hits the spring in the

dashed position and (b) the maximum compression of the

spring. Assume that the compression is small so the

position of the rod when the spring is compressed is

essentially horizontal.



Here please recognize that we have two particles

whose motions are dependent (i.e. we have a

constraint between them which is the rod).

𝑈𝐴→𝐵 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒

𝑈𝐴→𝐵 = 0

∆𝑇 =
1

2
𝑚2𝑘𝑔 𝑣2𝑘𝑔𝐵

2 − 𝑣2𝑘𝑔𝐴
2 +

1

2
𝑚4𝑘𝑔 𝑣4𝑘𝑔𝐵

2 − 𝑣4𝑘𝑔𝐴
2

0.3𝑣2𝑘𝑔 = 0.45𝑣4𝑘𝑔

𝑣2𝑘𝑔 = 1.5𝑣4𝑘𝑔

∆𝑇 =
1

2
2 𝑣2𝑘𝑔𝐵

2 − 02 +
1

2
4

2

3
𝑣2𝑘𝑔

2

− 02

∆𝑉𝑔 = 𝑚2𝑘𝑔𝑔∆ℎ2𝑘𝑔 +𝑚4𝑘𝑔𝑔∆ℎ4𝑘𝑔

∆ℎ2𝑘𝑔 = 0.45 sin 60°

∆ℎ4𝑘𝑔 = −0.3 sin 60°

∆𝑉𝑒 = 0

𝑣2𝑘𝑔𝐵
= 1.162 𝑚/𝑠

A

B C



𝑈𝐵→𝐶 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒

𝑈𝐵→𝐶 = 0

∆𝑇 =
1

2
𝑚2𝑘𝑔 𝑣2𝑘𝑔𝐵𝐶

2 − 𝑣2𝑘𝑔𝐵
2 +

1

2
𝑚4𝑘𝑔 𝑣4𝑘𝑔𝐶

2 − 𝑣4𝑘𝑔𝐵
2

0.3𝑣4𝑘𝑔 = 0.45𝑣2𝑘𝑔

𝑣4𝑘𝑔 = 1.5𝑣2𝑘𝑔

∆𝑇 =
1

2
2 02 − 𝑣2𝑘𝑔𝐵

2 +
1

2
4 02 −

2

3
𝑣2𝑘𝑔

2

∆𝑉𝑔 ≅ 0

∆𝑉𝑒 =
1

2
𝑘𝑥2

𝑥 = 12.07 𝑚𝑚

∆𝑉𝑔 could have been included as well (which is linear in x) so the energy 

equation would have been a quadratic in the unknown x.

∆𝑉𝑔 = 𝑚2𝑘𝑔𝑔∆ℎ2𝑘𝑔 +𝑚4𝑘𝑔𝑔∆ℎ4𝑘𝑔 = 2 ∗ 9.81 ∗ 𝑥 − 4 ∗ 9.81 ∗
𝑥

1.5
= −6.64𝑥

A

B C



None (4th), 3/164 (5th), None (6th), 3/159 (7th), None (8th)

The shank of the 2 kg vertical plunger occupies the

dashed position when resting in equilibrium against the

spring of stiffness k = 1.6 kN/m. The upper end of the

spring is welded to the plunger, and the lower end is

welded to the base plate. If the plunger is lifted 40 mm

above its equilibrium position and released from rest,

calculate its velocity v as it strikes the button A. Friction

is negligible.



𝑈𝐴→𝐵 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒

𝑈𝐴→𝐵 = 0

∆𝑇 =
1

2
𝑚 𝑣𝐴

2 − 𝑣𝐵
2 =

1

2
2 𝑣𝐴

2 − 02

∆𝑉𝑔 = 𝑚𝑔∆ℎ = −2 ∗ 9.81 ∗ 0.046 = −0.903 𝐽

∆𝑉𝑒 =
1

2
𝑘 𝑥𝐴

2 − 𝑥𝐵
2

During static equilibrium, weight causes a static deflection in the

spring: 𝑚𝑔 = 𝑘𝑥𝑠

𝑥𝑠 =
𝑚𝑔

𝑘
=
2 ∗ 9.81

1600
= 0.0123 𝑚

So unstretched length of the spring where it has zero elastic potential 

energy is 12.3 mm above the static equilibrium position.

𝑥𝐴 = 0.0123 + 0.006 = 0.01286 𝑚𝑚

𝑥𝐵 = 0.040 − 0.0123 = 0.0277 𝑚𝑚

𝑣𝐴 = 1.119 𝑚/𝑠

B



PART I: PARTICLES

Chapter 3: Kinetics of Particles

There are three different approaches to the

kinetics problems:

A. Direct application of Newton’s Second

Law/Force-Mass Acceleration Method

B. Work – Energy Principles (integration of second

law with respect to displacement)

C. Impulse and Momentum Methods (integration

of second law with respect to time)



PART I: PARTICLES
Chapter 3: Kinetics of Particles
C. Impulse and Momentum Methods

3/9 Linear Impulse and Linear Momentum

Linear momentum is defined as

Ԧ𝐺 ≡ 𝑚 Ԧ𝑣

Actually (in words because in Newton’s era mathematical

notation was not developed) second law is σ Ԧ𝐹 =
ሶԦ𝐺 =

𝑑

𝑑𝑡
𝑚 Ԧ𝑣 which boils down to σ Ԧ𝐹 =𝑚 Ԧ𝑎 for constant mass

particles because ሶ𝑚 =
𝑑𝑚

𝑑𝑡
= 0.

Linear impulse momentum principle states that

න
𝑡1

𝑡2

 Ԧ𝐹 𝑑𝑡 = Ԧ𝐺 𝑡2 − Ԧ𝐺 𝑡1 = ∆ Ԧ𝐺



PART I: PARTICLES
Chapter 3: Kinetics of Particles
C. Impulse and Momentum Methods

3/9 Linear Impulse and Linear Momentum

Conservation of Linear Momentum

During certain period of time if net force on a
particle is zero then during that time interval
momentum does not change and is conserved. It
is possible that the linear momentum (as a vector)
may be conserved or it may be conserved in one
particular direction whereas it may change in
other directions where forces act.



3/215 (4th), None (5th), 3/217 (6th), None (7th), None (8th)

The 10 kg block is resting on the horizontal surface when

the force T is applied to it for 7 seconds. The variation of

T with time is shown. Calculate the maximum velocity

reached by the block and the total time t during which

the block is in motion. The coefficients of static and

kinetic friction are both 0.50.



Recall that

𝐹𝑓 = ቐ
𝐹𝑓𝑠

≤ 𝜇𝑠𝑁 𝑖𝑓 𝑣𝑟𝑒𝑙 = 0

𝐹𝑓𝑘
= 𝜇𝑘𝑁 𝑖𝑓 𝑣𝑟𝑒𝑙 ≠ 0

Since block is initially stationary until T > sN it will stay

stationary and Ff = T. As soon as T > Ff the unbalanced force

starts the motion and block starts to slide. Ff is constant and

kN during sliding. Using this information one may obtain a

plot showing Fnet versus time. However we do not know if the

block stops before t = 7 s or not.

Maximum speed at t = 4s

න𝐹𝑛𝑒𝑡𝑑𝑡 =
4 − 1.96

2
50.15 = 10𝑣

𝑣 = 5.12 𝑚/𝑠

Assume it stops before t = 7 s.

න
𝑡=0

𝑡

𝐹𝑛𝑒𝑡𝑑𝑡 = 0

4 − 1.96

2
50.15 − 9.05 𝑡 − 4 = 0, 𝑡 = 9.74 𝑠 > 7 𝑠

Therefore it is still moving when t = 7s

4 − 1.96

2
50.15 − 9.05 7 − 4 − 49.05 𝑡 − 7 , 𝑡 = 7.5 𝑠

T

N
Ff
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3/220 (4th), 3/218 (5th), None (6th), 3/214 (7th), 3/214 (8th)

Two barges each with a displacement (mass) of 500 metric tons

are loosely moored in calm water. A stunt driver starts his 1500

kg car from rest at A, drives along the deck, and leaves the end

of 15° ramp at a speed of 50 km/h relative to the barge and the

ramp. The driver successfully jumps the gap and brings his car

to rest relative to barge 2 at B. Calculate the velocity imparted

to barge 2 just after the car has come to a rest on the barge.

Neglect the resistance of water to motion at low velocities

involved.



Till the instant car jumps off barge 1, the momentum of barge 1 and

car together is conserved in horizontal direction since there is no

horizontal external force.

0 = 𝑚1𝑣1
′ +𝑚𝐶𝑣𝐶ℎ𝑜𝑟𝑖𝑧

Since the car started moving 50 km/h speed is relative to the barge 1

and using relative velocity:

Ԧ𝑣𝐶 = Ԧ𝑣1 + Ԧ𝑣𝐶/1, Ԧ𝑣𝐶/1 = 50 𝑐𝑜𝑠15° Ƹ𝑖 + 𝑠𝑖𝑛15° Ƹ𝑗 𝑘𝑚/ℎ ≡ 13.42 Ƹ𝑖 + 3.59 Ƹ𝑗 𝑚/𝑠

Ԧ𝑣𝐶 = 13.42 − 𝑣1 Ƹ𝑖 + 3.59 Ƹ𝑗 𝑚/𝑠

𝑣𝐶ℎ𝑜𝑟𝑖𝑧 = 13.42 − 𝑣1 𝑚/𝑠

0 = 500 000𝑣1
′ + 1500 13.42 − 𝑣1 , 𝑣1 = −40.1 𝑚𝑚/𝑠

During flight of the car, neglecting air resistance, horizontal

component of its velocity is conserved so initial momentum of barge 2

and car is that of the car which is shared by the barge and the car

when the car comes to a rest relative to the barge.

𝑚𝐶𝑣𝐶ℎ𝑜𝑟𝑖𝑧 = 𝑚2 +𝑚𝐶 𝑣2

1500 ∗ 13.38 = 500 000 + 1500 𝑣2
𝑣2 = 40 𝑚𝑚/𝑠


