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3/86 (4th), 3/88 (5th), None (6th), 3/81 (7th), 3/85 (8th)

A small coin is placed on the horizontal surface of the
rotating disk. If the disk starts from rest and is given a
constant angular acceleration, a, determine an expression
for the number of revolutions, N, through which the disk
turns before the coin slips. The coefficient of static friction
between the coin and the disk is p..

Vertical




One may use n-t or r-0 coordinates. For circular motion
since r = ¥ = 0 they yield equivalent results (t = 0, r = -n).

Let us use n-t:

Z F, =ma;, = mra

an = ma, = mrw’* =m—
r

Fr —=pugN = \/Ff + F*
usmg = mrv a? + w*
(usmg)? = m*r?(a? + w*)

N
w- = -

Ffmax = ‘uSN

Vertical
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For constant o similar to linear motion wdw = adf can be

integrated to get w? = wy* + 2a(6 — ;) and 6 = 2nN so
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PART I: PARTICLES
Chapter 3: Kinetics of Particles

There are three different approaches to the
kinetics problems:

B. Work — Energy Principles (integration of second
law with respect to displacement)



PART I: PARTICLES

Chapter 3: Kinetics of Particles
B. Work — Energy Principles

3.6 & 3.7 Work, Kinetic and Potential Energies

Newton’s second law establishes an instantaneous
relation between the net force and acceleration. To
determine the change in velocity or displacement, the
computed acceleration has to be integrated using
appropriate kinematic relations.

Integration of Newton’s second law with respect to
displacement yields work-energy relations where the
cumulative effect of net force on change of velocity of the
particle is directly obtained.



Work

By definition infinitesimal work is
dU =F -dr
dU = Fdscosa = F,ds

r+dr

O
> 0, F; in the direction of displacement,work done on particle

dU< < 0, F; in the opposite direction of displacement,work by particle
=0,Fis perpendlcular to displacement,no work
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Work done on a particle: Kinetic Energy

U1—>2 — F - d'F)
J1

rZ

U1—>2 — C_i * df')

J1
Uiy = f mv - dv =—m(v2 — ;%)
V1

Recall first law of thermodynamics stating conservation of
energy. The work done on a particle of mass m is stored
as kinetic energy and can be fully recovered by bringing a
moving mass to a rest. Kinetic energy of a moving mass is
therefore defined as:

1
T = —muv?
zmv




Work done when deforming a Spring:

ElaStiCx Potential Ene rgy Strcf&fcz‘lz Ol;icll)klfigsesdst;rmg
2
Ui-2 = f Fsdx |
X1 : S~F=kx
X2 |
Ui, = kxdx yda BB )
X1 X9

1
Ui = ik(xzz — x12)

|
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This work is stored in an ideal elastic spring as elastic potential
energy and can fully be recovered. Therefore elastic potential
energy stored in a spring having deformation x (compression or

tension does not matter) is defined as:

V—lk 2
e_zx

Change in elastic potential energy of an elastic spring is:

1
AV, = Ek(xzz — X12)




Work done against Gravity:
Gravitational Potential Energy

7"2_)
U1—>2 Zf F - df')
Ty,

T2
Uiy = f —mgk - (dxi + dyj + dzl?)
1

Z2

U2 = _mgf dz = —mg(z; — 74)
Z

U1_>2 — mgAh i

Height change is positive when up (storing
potential energy).

Th1s energy stored due to height change is

he gravitational potential energy:
AV, = mgAh




Principle of Conservation of Energy (First Law of
Thermodynamics)

Power

Power is defined as rate of doing work or delivering
energy:

P—dU—ﬁ d?_ﬁ e
o dt dt Y
/sl = W]
Mechanical Efficiency
Pout
— <1
em P, =

Actually it is always less than 1 due to second law of
thermodynamics.



Conservative Force Fields
In conservative force fields the work done is independent of
path but only a function of end positions. Some examples of

conservative force fields are gravitational and elastic forces. In
that case

U=fﬁ-d?=o

for any closed path. Further for conservative fields F.-d# is an

exact differential of a function, F - d# = —dV then
dV dV dV 5 =

E. = —E,Fy = —@ and F, = 1, or F =—-VV
-~ 0 Jd .0

where V= la‘l‘]@ﬁ- kE

V is known as potential function (V, is gravitational potential

and V, is elastic potential) and VV is the gradient of the
potential function.



3/ 140 (4"), None (5, 3/ 145 (6""), None (7"), None (8"

The 10 kg block is released from rest on the horizontal

surface at point B, where the spring has been stretched a

distance of 0.5 m from its neutral position A. The

coefficient of kinetic friction between the block and the

plane is 0.30. Calculate:

a. the velocity of the block as it passes point A,

b. the maximum distance x to the left of A which the
block goes.

C A B
<X == 05m -~
k = 300 N/m

VA 10ke

;= 0.30



C A B

a. e X == (0.0 m —
% =300 N/m ‘
10 kg
EFy=O,N—mg=O !

N=mg=10%9.81=98.1N

uN = 0.3%98.1 =294 N mg} f_};
N

UB—>A — AT"‘AI/e Fs

N

1 1
AT = —m(v,? —vg?) = =10(v,% — 0%)

2 2
1 1
AV, =~ k(xa® = x5°) = 5300(0% = 0.5%) = —37.5]

vy =2.13m/s



C A B

b. < x =< 0.5m =
Us,c = AT + AV, or Ug_, = AV M 10 kg ‘

1 1
AT — Em(vcz — UAZ) — E 10(02 — 2.132) — _22.8] ug =030
1 1
AVe = 5 k(xc® = x4%) = 5300(xc* — 0%) oy T s
2 - — — _05 m F<—
150x< + 29.43x — 22.785 = 0, x {0.304 o NN

Since physics of friction force is not included in the

formulation of the problem as ﬁf = —uNsgn(v)i the
treatment is having a constant force in a fixed direction.
Therefore under the action of this constant force the mass
has two positions where it stops! It does not consider the
change in direction of the friction force when the direction
of motion of the block changes.

You could solve the same problem by applying Newton’s
second law directly, determining net force on the mass and
resulting acceleration and integrating.



3/ 148 (4"), 3/149 (5", 3/153 (6, 3/ 144 (7"), None (8")
The spring of constant k is unstretched when the slider of
mass m passes position B. If the slider is released from
rest in position A, determine its speed as it passes points
B and C. What is the normal force exerted by the guide on
the slider at position C? Neglect friction between the mass
and the circular guide, which lies in the vertical plane.




UA—>B =AT+AI{9 +AI/e

UA—>B =0

1
AT = Em(vBZ —v,?%) = Em(sz — 0%)
AV, = —mgR

1
AV, = Ek(sz - xAZ)

x4 =vVR2+R2—R=R(V2-1)
AV, = %k(o2 - [rR(V2-1)]")

kR?2
vg = |[29R +7(\/§— 1)2
N




or UB—>C = AT + AVQ A

AV, = —mgR
1

AT = Em(vcz — v5?)

Ve = 4gR+—(\/_ 1)

%
ZF—man— ;

NC—mg=m[4g+kER(\/§—1)2 mgld

N; = 5mg + kR(\/i — 1)2 INC



3/153 (4"), None (5), 3/166 (6""), 3/ 158 (71"), None (8"

The collar has a mass of 2 kg and is attached to the light
spring which has a stiffness of 30 N/m and an
unstretched length of 1.5 m. The collar is released from
rest at A and slides up the smooth rod under the action of
the constant 50 N force. Calculate the velocity of the

collar as it passes position B.
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UA—>B — AT"‘AVQ +AI/e
Usg =50 *1.5*cos30°=64.95]

1 1
AT = Em(vBZ —v,?%) = EZ(vBZ — 0%)

AVy =mgAh = 2+%981 15 =294]

1 1
A‘/e = Ek(sz — xAZ) = —30(x32 — 052)

2

xg =45 —¥y=+22+152-15=1m

1
=-30(1° ~ 0.5%) = 11.25]

vg =493 m/s

AVe
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3/149 (4"), 3/151 (5", 3/ 155 (6*), 3/ 149 (7%), None (8")
The light rod is pivoted at O and carries the 2 and 4 kg
particles. If the rod is released from rest at 6 = 60° and
swings in the vertical plane, calculate (a) the velocity of
the 2 kg particle just before it hits the spring in the
dashed position and (b) the maximum compression of the
spring. Assume that the compression is small so the
position of the rod when the spring is compressed is
essentially horizontal.

4 kg

s 2

K*- <\aoo mm =

= k =35 kN/m
. 9\ 0~ -
| \;&
\
450 mm >&_\

\ 4



Here please recognize that we have two particles
whose motions are dependent (i.e. we have a
constraint between them which is the rod).

UA—>B =AT+AV9+A‘/3

UA—>B =0
2 2\ 1 2 2
AT = > Makg (vzkgB — V2kg , ) + 5 Makg (v4kgB — Vakg , )
0.3V, = 0.45v44
Vokg = 1.5v4kg
2
1 1 2
AT =52 (varg, = 0%) + 54 (§”Zkg> -

AVy = mypggAhag + MygggAhyyg
Ahzkg = 0.45 sin 60°

Ahgyg = —0.3 sin 60°

AV, =0

Vokg, = 1.162m/s



UB—>C - AT + AVQ + AI/e 4ke P

UB—)C — O s Booxilm /gﬁ \ké35kN/m
1 1 B
_ _ 2 _ 2 - 2 _ 2
AT 2 M2kg (vz"g gc  U2kgp ) + o Makg (v‘”‘g ¢ ~ Vakgg ) 450 mm
0.3V45 = 045V, "

1/, N 1 (. (2 ?
AT=EZ(O ~ Vakg, )+E4 02 — | 3 V2kg

AV =0

L.
AV, =§kx
x =12.07 mm

AV, could have been included as well (which is linear in x) so the energy
equation would have been a quadratic in the unknown x.

X
(AVg = MykggAhokg + MyrggAhyrg = 2 % 9.81 * x — 4 % 9.81 * 15 = —6.64x)



None (4*), 3/ 164 (5*), None (6™"), 3/159 (7"), None (8"
The shank of the 2 kg vertical plunger occupies the
dashed position when resting in equilibrium against the
spring of stiffness k = 1.6 kN/m. The upper end of the
spring is welded to the plunger, and the lower end is
welded to the base plate. If the plunger is lifted 40 mm
above its equilibrium position and released from rest,
calculate its velocity v as it strikes the button A. Friction
is negligible. il

k= |G KMNmM
=
11
11

T
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$0 mm s



UA—>B = AT + AVQ + AI/@ m=2kg

UA_)B N O k =1.6 KN/m
. 2 2y = L 2 _ 2 =
AT=§m(vA —VB)=§2(UA — 0%) lle
AV, = mgAh = —2 x 9.81 % 0.046 = —0.903 J oL
1
AVe = El’c(xA2 — xp°%)

During static equilibrium, weight causes a static deflection in the
spring: mg = kxg
_mg 2x981

_mg _ — 0.0123
*s T Tk T 71600 m

So unstretched length of the spring where it has zero elastic potential
energy is 12.3 mm above the static equilibrium position.

x4 = 0.0123 + 0.006 = 0.01286 mm
xg = 0.040 — 0.0123 = 0.0277 mm
vy, =1.119m/s



PART I: PARTICLES
Chapter 3: Kinetics of Particles

There are three different approaches to the
kinetics problems:

C. Impulse and Momentum Methods (integration
of second law with respect to time)



PART I: PARTICLES
Chapter 3: Kinetics of Particles

C. Impulse and Momentum Methods

3/9 Linear Impulse and Linear Momentum

Linear momentum is defined as

-

G = mv

Actually (in words because in Newton’s era mathematical

notation was not developed) second law is Y F =G =
%(mﬁ) which boils down to Zﬁ =ma for constant mass

. . dm
particles because m = — = 0.

Linear impulse momentum principle states that

t2
J Zﬁdt = G(t,) — G(t;) = AG
Lty



PART I: PARTICLES
Chapter 3: Kinetics of Particles

C. Impulse and Momentum Methods

3/9 Linear Impulse and Linear Momentum

Conservation of Linear Momentum

During certain period of time if net force on a
particle is zero then during that time interval
momentum does not change and is conserved. It
is possible that the linear momentum (as a vector)
may be conserved or it may be conserved in one
particular direction whereas it may change in
other directions where forces act.



3/215 (4"), None (5, 3/217 (6"), None (7"), None (8"

The 10 kg block is resting on the horizontal surface when
the force T is applied to it for 7 seconds. The variation of
T with time is shown. Calculate the maximum velocity
reached by the block and the total time At during which
the block is in motion. The coefficients of static and

kinetic friction are both 0.50.

TN
10

40
Wkg p—>T

Hy = py = 0,50 0



Recall that

TN
100

Ffs < UsN if vy =0

Fr = .
! Fr, = N if Vper # 0

W0kg —T

Since block is initially stationary until T > p N it will stay

stationary and F; = T. As soon as T > F; the unbalanced force """ % i
starts the motion and block starts to slide. F;is constant and e
w N during sliding. Using this information one may obtain a

plot showing F,, versus time. However we do not know if the mgl l X

block stops before t = 7 s or not.

Maximum speed at t = 4s Fy

4—1.96
anetdt = ———50.15 = 10v

v=>512m/s
Assume it stops before t = 7 s.
t
f Fnetdt - O 60
t=0
40
4 —1.96 20
750.15—9.05(1:—4) =0,t=974s>7s .
20 012 3 [ 8 9 10
Therefore it is still moving when t = 7s 40
-60

4 —1.96
750.15 —9.05(7—4) —49.05(t—7),t =75s



3/220 (4"), 3/218 (5*), None (6%), 3/214 (7™), 3/214 (8")

Two barges each with a displacement (mass) of 500 metric tons
are loosely moored in calm water. A stunt driver starts his 1500
kg car from rest at A, drives along the deck, and leaves the end
of 15° ramp at a speed of 50 km/h relative to the barge and the
ramp. The driver successfully jumps the gap and brings his car
to rest relative to barge 2 at B. Calculate the velocity imparted
to barge 2 just after the car has come to a rest on the barge.
Neglect the resistance of water to motion at low velocities
involved.

A Kol | B




A — S B

= 1 g 15° === 2 P

[ 7 | 7

Till the instant car jumps off barge 1, the momentum of barge 1 and
car together is conserved in horizontal direction since there is no

horizontal external force.

_ !
0=myv; +meve, .

Since the car started moving 50 km/h speed is relative to the barge 1
and using relative velocity:

Ve = V1 + Vc/1,Vc/1 = 50(cos15°T + sin15°))km/h = (13.421 + 3.59))m/s

Ve = [(13.42 — vy)i 4+ 3.59]|m/s

Ve, = (1342 —v1)m/s

0 =500 000v; + 1500 (13.42 — v;),v; = —40.1 mm/s

During flight of the car, neglecting air resistance, horizontal
component of its velocity is conserved so initial momentum of barge 2

and car is that of the car which is shared by the barge and the car
when the car comes to a rest relative to the barge.

vaChOT‘iZ — (mz + mC)UZ
1500 * 13.38 = (500 000 + 1500)v,
v, =40 mm/s



