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PART I: PARTICLES
Chapter 3: Kinetics of Particles
3/14 Relative Motion

All the analyses we did up to now were relative to a fixed
coordinate system. Newton’s second law, work-energy and
impulse-momentum were used to analyze absolute
motion. If the frame of reference has non-zero acceleration
relative to the fixed coordinate system which cannot be
neglected then the treatment is different.

We assumed earth to be fixed. Acceleration of center of
earth with respect to sun is 0.00593 m/s2 and
acceleration of a point on the equator relative to the
center of earth is 0.0339 m/s2. Compared to g, 9.81 m/s2

these values are negligible so for most purposes earth
fixed reference frame is accurate enough.
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Relative Motion (Non-rotating Axes)

Ԧ𝑟𝐴 = Ԧ𝑟𝐵 + Ԧ𝑟𝐴/𝐵

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝐴/𝐵

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵



Newton’s second law for a constant

mass particle:

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎𝐴 = 𝑚 Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵

Unless Ԧ𝑎𝐵 = 0 Newton’s second law is not valid in
x-y-z coordinate system. Coordinate systems

where Ԧ𝑎𝐵 = 0 are known as inertial coordinate
systems which have zero acceleration relative to
the primary inertial reference frame which is fixed
in the universe. Newton’s second law is valid only
in inertial reference frames.
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D’Alembert’s Principle

Newton 1687, Principa

D’Alembert 1743 Traité de Dynamique

D’Alembert introduced so called inertia force which is a
resistance of mass to acceleration and converted
dynamics problem into a kinetostatic problem or dynamic
equilibrium.

෍ Ԧ𝐹 + Ԧ𝐹𝑖 = 0, Ԧ𝐹𝑖 = −𝑚 Ԧ𝑎

We will not utilize D’Alembert’s principle in this course
but it proves to be very useful in certain applications in
dynamics of machinery.
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Constant Velocity Translating Systems

These systems are also called inertial reference frames or 

Newtonian reference frames because Ԧ𝑎𝐵 = 0 and Newton’s 
second law holds in this reference frame.

Work-Energy Relation

Since this is an inertial reference frame σ Ԧ𝐹 = 𝑚 Ԧ𝑎𝑟𝑒𝑙 holds.

𝑑𝑈𝑟𝑒𝑙 =෍ Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 = 𝑚 Ԧ𝑎𝑟𝑒𝑙 ∙ 𝑑 Ԧ𝑟 = 𝑚 Ԧ𝑣𝑟𝑒𝑙 ∙ 𝑑 Ԧ𝑣𝑟𝑒𝑙 = 𝑚𝑣𝑟𝑒𝑙𝑑𝑣𝑟𝑒𝑙 = 𝑑
𝑚𝑣𝑟𝑒𝑙

2

2

𝑑𝑈𝑟𝑒𝑙 = 𝑑𝑇𝑟𝑒𝑙 , 𝑈1→2𝑟𝑒𝑙 = ∆𝑇𝑟𝑒𝑙

Although in an inertial reference frame Ԧ𝑎 = Ԧ𝑎𝑟𝑒𝑙, Ԧ𝑣 ≠ Ԧ𝑣𝑟𝑒𝑙
and Ԧ𝑟 ≠ Ԧ𝑟𝑟𝑒𝑙 therefore 𝑑𝑈 ≠ 𝑑𝑈𝑟𝑒𝑙 and 𝑑𝑇 ≠ 𝑑𝑇𝑟𝑒𝑙.
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Constant Velocity Translating Systems

Linear Impulse-Momentum Relation

෍ Ԧ𝐹 𝑑𝑡 = 𝑚 Ԧ𝑎𝑑𝑡 = 𝑚 Ԧ𝑎𝑟𝑒𝑙𝑑𝑡

Ԧ𝑎𝑟𝑒𝑙𝑑𝑡 = 𝑑 Ԧ𝑣𝑟𝑒𝑙

෍ Ԧ𝐹 𝑑𝑡 = 𝑑 𝑚 Ԧ𝑣𝑟𝑒𝑙

Define Ԧ𝐺𝑟𝑒𝑙 = 𝑚 Ԧ𝑣𝑟𝑒𝑙

෍ Ԧ𝐹 =
ሶԦ𝐺𝑟𝑒𝑙 , න

𝑡1

𝑡2

෍ Ԧ𝐹𝑑𝑡 = ∆ Ԧ𝐺𝑟𝑒𝑙

Since Ԧ𝑣 ≠ Ԧ𝑣𝑟𝑒𝑙, Ԧ𝐺 ≠ Ԧ𝐺𝑟𝑒𝑙.
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Constant Velocity Translating Systems

Angular Impulse-Momentum Relation

𝐻𝐵𝑟𝑒𝑙 = Ԧ𝑟𝑟𝑒𝑙 × Ԧ𝐺𝑟𝑒𝑙

ሶ𝐻𝐵𝑟𝑒𝑙 =
ሶԦ𝑟𝑟𝑒𝑙 × Ԧ𝐺𝑟𝑒𝑙 + Ԧ𝑟𝑟𝑒𝑙 ×

ሶԦ𝐺𝑟𝑒𝑙 = Ԧ𝑣𝑟𝑒𝑙 ×𝑚 Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑟𝑟𝑒𝑙 ×𝑚 Ԧ𝑎𝑟𝑒𝑙 =෍𝑀𝐵

Since Ԧ𝑣 ≠ Ԧ𝑣𝑟𝑒𝑙 and Ԧ𝑟 ≠ Ԧ𝑟𝑟𝑒𝑙,𝐻𝐵 ≠ 𝐻𝐵𝑟𝑒𝑙.



3/306 (4th), 3/310 (5th), 3/318 (6th), 3/304 (7th), 3/306 (8th)

The launch catapult of the aircraft carrier gives the 7 Mg

jet airplane a constant acceleration and launches the

airplane in a distance of 100 m measured along the

angled takeoff ramp. The carrier is moving at a steady

speed vC = 16 m/s. If an absolute aircraft speed of 90 m/s

is desired for takeoff, determine the net force, F, supplied

by the catapult and the aircraft engines.



Ԧ𝑣𝐴 = 90 𝑐𝑜𝑠𝛽 Ƹ𝑖 + 𝑠𝑖𝑛𝛽 Ƹ𝑗 𝑚/𝑠

Ԧ𝑣𝐶 = 16 Ƹ𝑖 𝑚/𝑠

Ԧ𝑣𝐴/𝐶 = 𝑣𝐴/𝐶 𝑐𝑜𝑠15° Ƹ𝑖 + 𝑠𝑖𝑛15° Ƹ𝑗 𝑚/𝑠

Ԧ𝑣𝐴 = Ԧ𝑣𝐶 + Ԧ𝑣𝐴/𝐶

90 𝑐𝑜𝑠𝛽 Ƹ𝑖 + 𝑠𝑖𝑛𝛽 Ƹ𝑗 = 16 Ƹ𝑖 + 𝑣𝐴/𝐶 𝑐𝑜𝑠15° Ƹ𝑖 + 𝑠𝑖𝑛15° Ƹ𝑗

𝑣𝐴/𝐶 = 74.4 𝑚/𝑠, 𝛽 = 12.36°

𝑈𝑟𝑒𝑙1→2 = ∆𝑇𝑟𝑒𝑙

𝐹𝑎𝑣𝑠𝑟𝑒𝑙 =
1

2
𝑚𝐴 𝑣𝑟𝑒𝑙

2 − 0

𝐹𝑎𝑣100 =
1

2
7000 ∗ 74.42

𝐹𝑎𝑣 = 193.7 𝑘𝑁

vC
15°

vA/C




3/313 (4th), 3/317 (5th), 3/325 (6th), 3/311 (7th), 3/313 (8th)

A simple pendulum is placed on an elevator, which

accelerates upwards as shown. If the pendulum is

displaced by an amount 0 and released from the rest

relative to the elevator, find the tension in the supporting

rod when  = 0.



෍𝐹𝑡 = 𝑚𝑎𝑡 , −𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚 𝓁 ሷ𝜃 + 𝑎0𝑠𝑖𝑛𝜃

෍𝐹𝑛 = 𝑚𝑎𝑛, 𝑇 − 𝑚𝑔𝑐𝑜𝑠𝜃 = 𝑚 𝓁 ሶ𝜃2 + 𝑎0𝑐𝑜𝑠𝜃

𝑇 = 𝑚 𝑔𝑐𝑜𝑠𝜃 + 𝓁 ሶ𝜃2 + 𝑎0𝑐𝑜𝑠𝜃 = 𝑚 𝑔 + 𝑎0 𝑐𝑜𝑠𝜃 + 𝓁 ሶ𝜃2

From Ft equation

ሷ𝜃 = −
𝑔 + 𝑎0
𝓁

𝑠𝑖𝑛𝜃

ሶ𝜃𝑑 ሶ𝜃 = ሷ𝜃𝑑𝜃

න
ሶ𝜃0

ሶ𝜃

ሶ𝜃𝑑 ሶ𝜃 = න
𝜃0

𝜃

−
𝑔 + 𝑎0
𝓁

𝑠𝑖𝑛𝜃𝑑𝜃

ሶ𝜃 = 2
𝑔 + 𝑎0
𝓁

𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0

𝑇 = 𝑚 𝑔 + 𝑎0 3𝑐𝑜𝑠𝜃 − 2𝑐𝑜𝑠𝜃0

a0

T, n

mg

t



PART II: RIGID BODIES
Chapter 5: Plane Kinematics of Rigid Bodies
5/1 Introduction

Rigid Body: It is a continuous collection of

infinitely many particles of infinitesimal mass.

The relative positions of particles remain

unchanged under applied forces (no deformation

or strain).

Kinematics of rigid bodies should be studied first

in order to relate the motion to forces or forces

needed for a desired motion.



5/1 Introduction

Types of Plane Motion of Rigid Bodies

1. Translation: Every line on the rigid body
remains parallel to its initial position, there is no
rotation therefore motion of the body can be
specified by the motion of any single point on the
body. Particle treatment is sufficient since there is
no rotation.



5/1 Introduction

Types of Plane Motion of Rigid Bodies

2. Rotation: Every particle moves in concentric
circles centered at the axis of rotation.



5/1 Introduction

Types of Plane Motion of Rigid Bodies

3. General Plane Motion: This is a combination of
translation and rotation. The motion can be
analyzed either by absolute displacements and
their time derivatives or by relative motion
concept.



5/2 Rotation

Any two lines on a rigid body that have angular positions
1 and 2 with respect to any arbitrary reference may be
used to designate the rotation.

𝜃2 = 𝜃1 + 𝛽

Because body is rigid,  is a constant angle. Therefore
angular displacements are equal:

∆𝜃1 = ∆𝜃2

Also time rates of changes are equal:

ሶ𝜃1 = ሶ𝜃2 ≡ 𝜔

ሷ𝜃1 = ሷ𝜃2 ≡ 𝛼

Therefore for a rigid body there is a single angular
velocity, , and a single angular acceleration, .



Angular Motion Relations

𝜔 ≡
𝑑𝜃

𝑑𝑡
= ሶ𝜃

𝛼 ≡
𝑑𝜔

𝑑𝑡
= ሶ𝜔 =

𝑑2𝜃

𝑑𝑡2
= ሷ𝜃

Solving dt from the two definitions yields:

𝜔𝑑𝜔 = 𝛼𝑑𝜃 or ሶ𝜃𝑑 ሶ𝜃 = ሷ𝜃𝑑𝜃

Please recognize that if  is measured counter
clockwise (i.e. increasing in counter clockwise
direction), positive directions for angular velocity
and acceleration are the counter clockwise as
well.

5/2 Rotation



Rotation about a Fixed Axis

Consider an arbitrary particle, A, on the rigid body. Ԧ𝑟 is the
position vector of A relative to the rotation axis O. From
kinematics of particles it is known that
𝑣𝐴 = 𝑟𝜔
𝑎𝐴𝑡 = 𝑟𝛼

𝑎𝐴𝑛 = 𝑟𝜔2 =
𝑣𝐴

2

𝑟
= 𝑣𝐴𝜔

These relations can be expressed as vectors if cross product 
is utilized:

Ԧ𝑣𝐴 =
ሶԦ𝑟𝐴 = 𝜔 × Ԧ𝑟𝐴

Ԧ𝑎𝐴 =
ሶԦ𝑣𝐴 =

ሶ𝜔 × Ԧ𝑟𝐴 +𝜔 × ሶԦ𝑟𝐴 = Ԧ𝛼 × Ԧ𝑟𝐴 +𝜔 × 𝜔 × Ԧ𝑟𝐴 = Ԧ𝛼 × Ԧ𝑟𝐴 −𝜔2 Ԧ𝑟𝐴

5/2 Rotation



5/21 (4th), None (5th), 5/23 (6th), None (7th), None (8th)

The circular disk rotates about its z axis with an angular

velocity in the direction shown. At a certain instant the

magnitude of velocity of point A is 3 m/s and is

decreasing at a rate of 7.2 m/s2. Write the vector

expressions for the angular acceleration Ԧ𝛼 of the disk and

the total acceleration of point B at this instant.



Ԧ𝑣𝐴 = 𝜔 × Ԧ𝑟𝐴, −3 Ƹ𝑗 = 𝜔෠𝑘 × −0.2 Ƹ𝑖

𝜔 =
−0.2

−3
= 15 𝑟𝑎𝑑/𝑠, 𝜔 = 15෠𝑘 𝑟𝑎𝑑/𝑠

Ԧ𝑎𝐴𝑡 = 𝛼෠𝑘 × Ԧ𝑟𝐴, 7.2 Ƹ𝑗 = 𝛼෠𝑘 × −0.2 Ƹ𝑖

𝛼 =
−0.2

7.2
= −36 𝑟𝑎𝑑/𝑠2, Ԧ𝛼 = −36෠𝑘 𝑟𝑎𝑑/𝑠2

Ԧ𝑎𝐵 = Ԧ𝛼 × Ԧ𝑟𝐵 −𝜔2 Ԧ𝑟𝐵 = −36෠𝑘 × 0.15 Ƹ𝑗 − 152 ∗ 0.15 Ƹ𝑗 = 5.4 Ƹ𝑖 − 33.75 Ƹ𝑗 𝑚/𝑠2



Analysis of General Plane Motion

Absolute / Relative Motion Analyses
5/3 Absolute Motion

A geometric relation (which is actually

a constraint equation for the motion of

the particles on the rigid body we are

interested in) is written for the rigid

body. Time derivatives of this

constraint equation yields velocities

and accelerations.



Sample Problem 5/4

A wheel of radius r rolls on a flat surface without

slipping. Determine the angular motion of the

wheel in terms of the linear motion of its center, O.

Also determine the acceleration of a point on the

rim of the wheel as the point comes into contact

with the surface on which the wheel rolls.



Since this is rolling without slipping point of

contact with ground has zero velocity momentarily

and arc length on the rim is equal to the distance

travelled.

𝑠 = 𝑠𝑂 = 𝑟𝜃

ሶ𝑠 = 𝑣𝑂 = 𝑟 ሶ𝜃 = 𝑟𝜔

ሷ𝑠 = 𝑎𝑂 = 𝑟 ሷ𝜃 = 𝑟𝛼



To determine the acceleration of a point on the rim

of the wheel for any position, , just select the

origin of the coordinate axis at C when  = 0.

Position of point C for any  would be:

𝑥𝐶 = 𝑠 − 𝑟𝑠𝑖𝑛𝜃 = 𝑟𝜃 − 𝑟𝑠𝑖𝑛𝜃 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 − 𝑟𝑐𝑜𝑠𝜃 = 𝑟 1 − 𝑐𝑜𝑠𝜃
which are constraint equations!



𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
Derivatives yield velocity and acceleration of C:

𝑣𝐶𝑥 = ሶ𝑥𝐶 = 𝑟 ሶ𝜃 − ሶ𝜃𝑐𝑜𝑠𝜃 = 𝑟 ሶ𝜃 1 − 𝑐𝑜𝑠𝜃

𝑣𝐶𝑦 = ሶ𝑦𝐶 = 𝑟 ሶ𝜃𝑠𝑖𝑛𝜃

𝑎𝐶𝑥 = ሷ𝑥𝐶 = 𝑟 ሷ𝜃 1 − 𝑐𝑜𝑠𝜃 + 𝑟 ሶ𝜃2𝑠𝑖𝑛𝜃

𝑎𝐶𝑦 = ሷ𝑦𝐶 = 𝑟 ሷ𝜃𝑠𝑖𝑛𝜃 + 𝑟 ሶ𝜃2𝑐𝑜𝑠𝜃



𝑎𝐶𝑥 = ሷ𝑥𝐶 = 𝑟 ሷ𝜃 1 − 𝑐𝑜𝑠𝜃 + 𝑟 ሶ𝜃2𝑠𝑖𝑛𝜃

𝑎𝐶𝑦 = ሷ𝑦𝐶 = 𝑟 ሷ𝜃𝑠𝑖𝑛𝜃 + 𝑟 ሶ𝜃2𝑐𝑜𝑠𝜃

For C in contact with ground,

𝜃 = 2𝑘𝜋, 𝑘 = ⋯ ,−2,−1, 0, 1, 2, … , 𝑠𝑖𝑛𝜃 = 0, 𝑐𝑜𝑠𝜃 = 1

𝑎𝐶𝑥 = ሷ𝑥𝐶 = 𝑟 ሷ𝜃 1 − 1 + 𝑟 ሶ𝜃2 ∗ 0 = 0

𝑎𝐶𝑦 = ሷ𝑦𝐶 = 𝑟 ሷ𝜃 ∗ 0 + 𝑟 ሶ𝜃2 ∗ 1 = 𝑟𝜔2

Please also go over the solution in the textbook!

𝑎𝐶= 𝑟𝜔2



Plot trajectory of point C in Excel:

𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
Let 𝑟 = 2
Create a column for  in degrees:



𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
Excel works in radians so convert the angle into

radians:



𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
Type x and y coordinates of C as:



𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
Copy everything down by dragging the little box

down till  = 360 degrees



𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
In Insert tab

…Charts select scatter



𝑥𝐶 = 𝑟 𝜃 − 𝑠𝑖𝑛𝜃
𝑦𝐶 = 𝑟 1 − 𝑐𝑜𝑠𝜃
Stretch the plot so that x and y distances are

equal:


