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5/112 (4th), 5/114 (5th), 5/119 (6th), 5/116 (7th), 5/118 (8th)

Motion of the roller A against its restraining spring is

controlled by the downward motion of the plunger E. For an

interval of motion the velocity of E is v = 0.2 m/s.

Determine the velocity of A when  becomes 90°.



ICZV

𝑣𝐴

𝑣𝐵

𝑣𝐴 is along the slot,

Consider point B on body OB, it makes fixed axis

rotation about O so 𝑣𝐵 is ⊥ to OB.

ICZV is on a line ⊥ to 𝑣𝐴 drawn through A

ICZV is on a line ⊥ to 𝑣𝐵 drawn through B

ICZV is at the intersection of these two lines!



ICZV

𝑣𝐴

𝑣𝐵

𝑣𝐷 is ⊥ to D ICZV line,

𝑣𝐸 is downwards

therefore the vertical component of 𝑣𝐷 should be

equal to 𝑣𝐸 and there is a relative motion of D with

respect to E which is sliding by the roller which is

horizontal!

𝑣𝐷
𝑣𝐸

𝑣𝐷

𝑣𝐷/𝐸



ICZV

𝑣𝐴

𝑣𝐵

Using trigonometry:

𝐴 𝐼𝐶𝑍𝑉 =
5

3
∗ 120 = 200 𝑚𝑚

𝐵 𝐼𝐶𝑍𝑉 = 160 𝑚𝑚

𝐷 𝐼𝐶𝑍𝑉 = 602 ∗ 1602 = 170.9 𝑚𝑚

𝛾 = 𝑠𝑖𝑛−1
120

200
= 36.9°

𝛼 = 𝑡𝑎𝑛−1
60

160
= 20.6°

𝛽 = 90° − 𝛼 − 𝛾 = 32.6° 𝑣𝐸

𝑣𝐸
𝑣𝐷

𝑣𝐷/𝐸







ICZV

𝑣𝐴

𝑣𝐵

𝑣𝐷 =
𝑣

𝑐𝑜𝑠𝛽
= 0.327 𝑚/𝑠

𝜔𝐴𝐵𝐷 =
𝑣𝐷

𝐷 𝐼𝐶𝑍𝑉
=

𝑣𝐴
𝐴 𝐼𝐶𝑍𝑉

(𝐶𝐶𝑊)

𝑣𝐴 = 0.383 𝑚/𝑠 →

𝑣𝐷

𝑣𝐸
𝑣𝐷

𝑣𝐷/𝐸







𝜔𝐴𝐵𝐷



Analysis of General Plane Motion

Relative Motion Analysis
5/6 Relative Acceleration

Time derivative of relative velocity equation,

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝐴/𝐵
yields the relative acceleration equation:

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵
Ԧ𝑣𝐴/𝐵 = 𝜔 × Ԧ𝑟𝐴/𝐵

Ԧ𝑎𝐴/𝐵 =
𝑑 Ԧ𝑣𝐴/𝐵

𝑑𝑡
=

𝑑

𝑑𝑡
𝜔 × Ԧ𝑟𝐴/𝐵

Ԧ𝑎𝐴/𝐵 = ሶ𝜔 × Ԧ𝑟𝐴/𝐵 + 𝜔 × ሶԦ𝑟𝐴/𝐵
Ԧ𝑎𝐴/𝐵 = Ԧ𝛼 × Ԧ𝑟𝐴/𝐵 +𝜔 × 𝜔 × Ԧ𝑟𝐴/𝐵
Ԧ𝑎𝐴/𝐵 = Ԧ𝛼 × Ԧ𝑟𝐴/𝐵 −𝜔2 Ԧ𝑟𝐴/𝐵
Ԧ𝑎𝐴/𝐵 = Ԧ𝑎𝐴/𝐵𝑡

+ Ԧ𝑎𝐴/𝐵𝑛



Analysis of General Plane Motion

Relative Motion Analysis
5/6 Relative Acceleration

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵
Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝐴/𝐵 − 𝜔2 Ԧ𝑟𝐴/𝐵
Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵𝑡

+ Ԧ𝑎𝐴/𝐵𝑛
Since in general relative acceleration

equation contains velocity variables

too, it is required to solve relative

velocity equation first.

Please remember, instant center of zero

velocity in general has non-zero

acceleration therefore cannot be used

as an acceleration center!



5/119 (4th), None (5th), 5/126 (6th), None (7th), 5/123 (8th)

A container for waste materials is dumped by the

hydraulically activated linkage shown. If the piston rod

starts from rest in the position indicated and has an

acceleration of 0.5 m/s2 in the direction shown, compute

the initial angular acceleration of the container.



Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵𝑡
+ Ԧ𝑎𝐴/𝐵𝑛

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝐴/𝐵 − 𝜔2 Ԧ𝑟𝐴/𝐵
𝜔 = 0

−0.5 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗 = 𝑎𝐵 Ƹ𝑖 + 𝛼෠𝑘 × 2 Ƹ𝑖
Ƹ𝑖: 𝑎𝐵 = −0.5𝑐𝑜𝑠45° = −0.354 𝑚/𝑠2

Ƹ𝑗: −0.5𝑠𝑖𝑛45° = 2𝛼
𝛼 = −0.1768 𝑟𝑎𝑑/𝑠2



5/137 (4th), 5/141 (5th), 5/145 (6th), None (7th), None (8th)

The linkage shown is a four-bar mechanism. If OA has a

constant counterclockwise angular velocity O = 10 rad/s,

calculate the angular acceleration of link AB for the

position where the coordinates of A are x = -60 mm and y =

80 mm. Link BC is vertical for this position. Solve using

vector algebra.



Four-bar mechanism is formed by connecting four rigid

bodies (one is ground and that’s why English people call it

a three-bar mechanism) by four revolute (pin) joints.

It is one of the basic building blocks of many mechanical

machines.

A crank-rocker four-bar mechanism converts continuous

rotation of the crank into swinging (back and forth) motion

of the rocker.



Please recognize that we have a point A on body OA (crank)

that makes fixed axis rotation about O and another point A

on body AB (coupler). These two points are permanently

coincident points both on the axis of the pin (revolute) joint

connecting two bodies. Similarly point B on body BC

(follower) makes fixed axis rotation about point C and we

have a permanently coincident point B on body AB.

In writing absolute accelerations of points A and B we will

consider them to be on bodies OA and BC respectively

whereas for relative acceleration we will use permanently

coincident points A and B on body AB.

Ԧ𝑎𝐵 = Ԧ𝑎𝐴 + Ԧ𝑎𝐵/𝐴𝑡
+ Ԧ𝑎𝐵/𝐴𝑛

Ԧ𝛼𝐵𝐶 × Ԧ𝑟𝐵/𝐶 − 𝜔𝐵𝐶
2 Ԧ𝑟𝐵/𝐶 = Ԧ𝛼𝑂𝐴 × Ԧ𝑟𝐴/𝑂 − 𝜔𝑂𝐴

2 Ԧ𝑟𝐴/𝑂 + Ԧ𝛼𝐴𝐵 × Ԧ𝑟𝐵/𝐴 − 𝜔𝐴𝐵
2 Ԧ𝑟𝐵/𝐴

However angular velocities of coupler (AB) and follower (BC)

are not known in addition to their angular accelerations so

first relative velocity relation needs to be solved using the

same properties of points A and B.



Ԧ𝑣𝐵 = Ԧ𝑣𝐴 + Ԧ𝑣𝐵/𝐴

𝜔𝐵𝐶 × Ԧ𝑟𝐵/𝐶 = 𝜔𝑂𝐴 × Ԧ𝑟𝐴/𝑂 + 𝜔𝐴𝐵 × Ԧ𝑟𝐵/𝐴

Ԧ𝑟𝐵/𝐶 = 0.1800 Ƹ𝑗 𝑚

Ԧ𝑟𝐴/𝑂 = −0.0600 Ƹ𝑖 + 0.0800 Ƹ𝑗 𝑚

Ԧ𝑟𝐵/𝐴 = 0.240 Ƹ𝑖 + 0.1000 Ƹ𝑗 𝑚𝑚

𝜔𝐵𝐶
෠𝑘 × 0.1800 Ƹ𝑗 = 10෠𝑘 × −0.0600 Ƹ𝑖 + 0.0800 Ƹ𝑗 + 𝜔𝐴𝐵

෠𝑘 × 0.240 Ƹ𝑖 + 0.1000 Ƹ𝑗

−0.18𝜔𝐵𝐶 Ƹ𝑖 = −0.6 Ƹ𝑗 − 0.8 Ƹ𝑖 + 0.24𝜔𝐴𝐵 Ƹ𝑗 − 0.1𝜔𝐴𝐵 Ƹ𝑖

Ƹ𝑗: 0 = −0.6 + 0.24𝜔𝐴𝐵, 𝜔𝐴𝐵 = 2.5 𝑟𝑎𝑑/𝑠

Ƹ𝑖: −0.18𝜔𝐵𝐶 = −0.8 − 0.1 ∗ 2.5, 𝜔𝐵𝐶 = 5.83𝑟𝑎𝑑/𝑠

Ԧ𝑎𝐵 = Ԧ𝑎𝐴 + Ԧ𝑎𝐵/𝐴𝑡
+ Ԧ𝑎𝐵/𝐴𝑛

𝛼𝐵𝐶 ෠𝑘 × 0.18 Ƹ𝑗 − 5.8320.18 Ƹ𝑗

= 0෠𝑘 × −0.06 Ƹ𝑖 + 0.08 Ƹ𝑗 − 102 −0.06 Ƹ𝑖 + 0.08 Ƹ𝑗 + 𝛼𝐴𝐵 ෠𝑘 × 0.24 Ƹ𝑖 + 0.1 Ƹ𝑗

− 2.52 0.24 Ƹ𝑖 + 0.1 Ƹ𝑗

−0.18𝛼𝐵𝐶 Ƹ𝑖 − 6.125 Ƹ𝑗 = 6 Ƹ𝑖 − 8 Ƹ𝑗 + 0.24𝛼𝐴𝐵 Ƹ𝑗 − 0.1𝛼𝐴𝐵 Ƹ𝑖 − 1.5 Ƹ𝑖 − 0.625 Ƹ𝑗
Ƹ𝑗: −6.125 = −8 + 0.24𝛼𝐴𝐵 − 0.625, 𝛼𝐴𝐵 = 10.42 𝑟𝑎𝑑/𝑠2

Ƹ𝑖: −0.18𝛼𝐵𝐶 = 6 − 0.1 ∗ 10.42 − 1.5, 𝛼𝐵𝐶 = −19.2 𝑟𝑎𝑑/𝑠2



None (4th), 5/146 (5th), 5/154 (6th), None (7th), None (8th)

If end A of the constrained link has a constant downward

velocity vA of 2 m/s as the bar passes the position for which

 = 30°, determine the acceleration of the mass center G in

the middle of the link.



Ԧ𝑎𝐺 = Ԧ𝑎𝐴 + Ԧ𝑎𝐺/𝐴
Since neither direction nor magnitude (or none of the two orthogonal

components) of aG are known, the right hand side of the equation should be

fully known.

Ԧ𝑎𝐵 = Ԧ𝑎𝐴 + Ԧ𝑎𝐵/𝐴
angular velocity of AB would be another unknown in this equation therefore 

starting with the velocity equation the solution may be stepwise:

Ԧ𝑣𝐵 = Ԧ𝑣𝐴 + Ԧ𝑣𝐵/𝐴 = Ԧ𝑣𝐴 + 𝜔 × Ԧ𝑟𝐵/𝐴

𝑣𝐵 Ƹ𝑖 = −2 Ƹ𝑗 + 𝜔෠𝑘 × −0.2 𝑐𝑜𝑠30° Ƹ𝑖 + 𝑠𝑖𝑛30° Ƹ𝑗

𝑣𝐵 Ƹ𝑖 = −2 Ƹ𝑗 − 0.1732𝜔 Ƹ𝑗 + 0.1𝜔 Ƹ𝑖

Ƹ𝑗: 0 = −2 − 0.1732𝜔, 𝜔 = −11.55 𝑟𝑎𝑑/𝑠

Ƹ𝑖: 𝑣𝐵 = 0.1 ∗ −11.55 = −1.155 𝑚/𝑠

𝑎𝐵 Ƹ𝑖 = 0 + Ԧ𝛼 × Ԧ𝑟𝐵/𝐴 − 𝜔2 Ԧ𝑟𝐵/𝐴 = 𝛼෠𝑘 × −0.2 𝑐𝑜𝑠30° Ƹ𝑖 + 𝑠𝑖𝑛30° Ƹ𝑗 − 11.552 ∗ −0.2 𝑐𝑜𝑠30° Ƹ𝑖 + 𝑠𝑖𝑛30° Ƹ𝑗

𝑎𝐵 Ƹ𝑖 = −0.1732𝛼 Ƹ𝑗 + 0.1𝛼 Ƹ𝑖 + 23.1 Ƹ𝑖 + 13.34 Ƹ𝑗

Ƹ𝑗: 0 = −0.1732𝛼 + 13.34, 𝛼 = 77.0 𝑟𝑎𝑑/𝑠2

Ƹ𝑖: 𝑎𝐵 = 0.1 ∗ 77.0 + 23.1, 𝑎𝐵 = 30.8 𝑚/𝑠2

Ԧ𝑎𝐺 = Ԧ𝑎𝐴 + Ԧ𝛼 × Ԧ𝑟𝐺/𝐴 −𝜔
2 Ԧ𝑟𝐺/𝐴

= 77෠𝑘 × −0.1 𝑐𝑜𝑠30° Ƹ𝑖 + 𝑠𝑖𝑛30° Ƹ𝑗 + 30.820.1 𝑐𝑜𝑠30° Ƹ𝑖 + 𝑠𝑖𝑛30° Ƹ𝑗 = −15.40 Ƹ𝑖 𝑚/𝑠2



Analysis of General Plane Motion

Relative Motion Analysis
5/7 Motion Relative to Rotating Axes

Up to now we did relative motion analysis using a 

non-rotating axes. However in many problems a 

rotating coordinate frame may be necessary.

Similar to previous analysis:

Ԧ𝑟𝐴 = Ԧ𝑟𝐵 + Ԧ𝑟𝐴/𝐵 = Ԧ𝑟𝐵 + Ԧ𝑟𝑟𝑒𝑙 = Ԧ𝑟𝐵 + 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗

Ƹ𝑖
Ƹ𝑗



In previous analyses since orientation of x-y

coordinate system was fixed relative to the fixed

X-Y coordinate system the unit vectors in

moving coordinate system, Ƹ𝑖 and Ƹ𝑗, having unit

magnitude and fixed directions did not possess

time derivatives. In rotating coordinates,

despite their fixed magnitudes, since their

directions are changing due to rotation they

possess time derivatives.

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝐴/𝐵 = ሶԦ𝑟𝐵 + ሶ𝑥 Ƹ𝑖 + ሶ𝑦 Ƹ𝑗 + 𝑥 ሶƸ𝑖 + 𝑦 ሶƸ𝑗

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝑟𝑒𝑙 + 𝒙 ሶƸ𝒊 + 𝒚 ሶƸ𝒋

So the question is:

What are ሶƸ𝑖 and ሶƸ𝑗? 

Ƹ𝑖
Ƹ𝑗



So the question is:

What are ሶƸ𝑖 and ሶƸ𝑗? 

Consider an infinitesimal time interval dt

during which the moving coordinate axis rotate

by an infinitesimal angle d therefore the unit

vectors Ƹ𝑖 and Ƹ𝑗 rotate the same amount.

The infinitesimal change in these unit vectors

in this infinitesimal time interval is:

𝑑 Ƹ𝑖 = 𝑑𝜃 Ƹ𝑗
𝑑 Ƹ𝑗 = −𝑑𝜃 Ƹ𝑖
𝑑 Ƹ𝑖

𝑑𝑡
= ሶƸ𝑖,

𝑑𝜃

𝑑𝑡
= 𝜔

ሶƸ𝑖 = 𝜔 Ƹ𝑗
ሶƸ𝑗 = −𝜔 Ƹ𝑖



ሶƸ𝑖 = 𝜔 Ƹ𝑗
ሶƸ𝑗 = −𝜔 Ƹ𝑖

For planar kinematics

𝜔 = 𝜔෠𝑘
so

𝜔 × Ƹ𝑖 = 𝜔෠𝑘 × Ƹ𝑖 = 𝜔 Ƹ𝑗
and

𝜔 × Ƹ𝑗 = 𝜔෠𝑘 × Ƹ𝑗 = −𝜔 Ƹ𝑖
therefore
ሶƸ𝑖 = 𝜔 × Ƹ𝑖
ሶƸ𝑗 = 𝜔 × Ƹ𝑗



ሶƸ𝑖 = 𝜔 × Ƹ𝑖
ሶƸ𝑗 = 𝜔 × Ƹ𝑗

Relative Velocity

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝑟𝑒𝑙 + 𝑥 ሶƸ𝑖 + 𝑦 ሶƸ𝑗

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝑟𝑒𝑙 + 𝑥𝜔 × Ƹ𝑖 + 𝑦𝜔 × Ƹ𝑗
Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝑟𝑒𝑙 + 𝜔 × 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 = Ԧ𝑣𝐵 + 𝜔 × 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + Ԧ𝑣𝑟𝑒𝑙
Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + 𝜔 × Ԧ𝑟𝑟𝑒𝑙 + Ԧ𝑣𝑟𝑒𝑙
Ԧ𝑣𝑟𝑒𝑙: velocity of the particle measured in rotating (x-

y) coordinates

𝜔 × Ԧ𝑟𝑟𝑒𝑙: velocity difference between the rotating (x-y) 

and non-rotating (X-Y) coordinates

Ԧ𝑣𝐵: absolute velocity of origin of rotating coordinates

Ԧ𝑣𝐴: absolute velocity of the particle



Ԧ𝑣𝐴 = Ԧ𝑣𝐵 +𝜔 × Ԧ𝑟𝑟𝑒𝑙 + Ԧ𝑣𝑟𝑒𝑙
Interpretation of Terms

Assume the moving coordinate system x-y be formed

of a plate with a slot in it where particle A can move

in relative to the moving coordinate system.

Assume a point P, instantly coincident with particle A

fixed on the moving plane.

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 +𝜔 × Ԧ𝑟𝑟𝑒𝑙 + Ԧ𝑣𝑟𝑒𝑙
Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + Ԧ𝑣𝑃/𝐵 + Ԧ𝑣𝐴/𝑃

Ԧ𝑣𝐴 = Ԧ𝑣𝑃 + Ԧ𝑣𝐴/𝑃



Transformation of a Time Derivative

(Transport or Coriolis Theorem)

Let 𝑉 be any vector quantity

𝑉 = 𝑉𝑥 Ƹ𝑖 + 𝑉𝑦 Ƹ𝑗

The time derivative of this quantity in X-Y coordinates is

𝑑𝑉

𝑑𝑡 𝑋−𝑌
= ሶ𝑉𝑥 Ƹ𝑖 + ሶ𝑉𝑦 Ƹ𝑗 + 𝑉𝑥 ሶƸ𝑖 + 𝑉𝑦 ሶƸ𝑗

𝑑𝑉

𝑑𝑡 𝑋−𝑌
=

𝑑𝑉

𝑑𝑡 𝑥−𝑦
+𝜔 × 𝑉

The term 𝜔 × 𝑉 is the difference between the time

derivative of 𝑉 in the rotating (x-y) and non-rotating

(X-Y) coordinate frames.



Relative Acceleration

Relative acceleration equation may be obtained either

by taking time derivative of relative velocity equation

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + 𝜔 × Ԧ𝑟𝑟𝑒𝑙 + Ԧ𝑣𝑟𝑒𝑙
or by applying Transport/Coriolis Theorem.
𝑑

𝑑𝑡
Ԧ𝑣𝐴 =

𝑑

𝑑𝑡
Ԧ𝑣𝐵 +

𝑑

𝑑𝑡
𝜔 × Ԧ𝑟𝑟𝑒𝑙 +

𝑑

𝑑𝑡
Ԧ𝑣𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 +
ሶ𝜔 × Ԧ𝑟𝑟𝑒𝑙 + 𝜔 ×

𝑑

𝑑𝑡
𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 +

𝑑

𝑑𝑡
ሶ𝑥 Ƹ𝑖 + ሶ𝑦 Ƹ𝑗

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 +𝜔 × ሶ𝑥 Ƹ𝑖 + ሶ𝑦 Ƹ𝑗 + 𝑥 ሶƸ𝑖 + 𝑦 ሶƸ𝑗 + ሷ𝑥 Ƹ𝑖 + ሷ𝑦 Ƹ𝑗 + ሶ𝑥 ሶƸ𝑖 + ሶ𝑦 ሶƸ𝑗

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙

ሶƸ𝑖 = 𝜔 × Ƹ𝑖, ሶƸ𝑗 = 𝜔 × Ƹ𝑗



Relative Acceleration
Relative acceleration equation may be obtained either

by taking time derivative of relative velocity equation

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 + 𝜔 × Ԧ𝑟𝑟𝑒𝑙 + Ԧ𝑣𝑟𝑒𝑙
or by applying Transport/Coriolis Theorem.
𝑑

𝑑𝑡
Ԧ𝑣𝐴 =

𝑑

𝑑𝑡
Ԧ𝑣𝐵 +

𝑑

𝑑𝑡
𝜔 × Ԧ𝑟𝑟𝑒𝑙 +

𝑑

𝑑𝑡
Ԧ𝑣𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 +
ሶ𝜔 × Ԧ𝑟𝑟𝑒𝑙 + 𝜔 × ሶԦ𝑟𝑟𝑒𝑙 +

𝑑

𝑑𝑡
Ԧ𝑣𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 +𝜔 × 𝜔 × Ԧ𝑟𝑟𝑒𝑙 + Ԧ𝑣𝑟𝑒𝑙 + 𝜔 × Ԧ𝑣𝑟𝑒𝑙 +
ሶԦ𝑣𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙

𝑑𝑉

𝑑𝑡 𝑋−𝑌
= 𝜔 × 𝑉 +

𝑑𝑉

𝑑𝑡 𝑥−𝑦



Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙
Interpretation of Terms

Assume the moving coordinate system x-y be formed

of a plate with a slot in it where particle A can move

in relative to the moving coordinate system.

Assume a point P, instantly coincident with particle A

is fixed on the moving plane.
Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝑃/𝐵 + Ԧ𝑎𝐴/𝑃



Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙
Interpretation of Terms

Assume the moving coordinate system x-y be formed

of a plate with a slot in it where particle A can move

in relative to the moving coordinate system.

Assume a point P, instantly coincident with particle A

is fixed on the moving plane.
Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝑃/𝐵 + Ԧ𝑎𝐴/𝑃

Ԧ𝑎𝐴 = Ԧ𝑎𝑃 + Ԧ𝑎𝐴/𝑃



Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙
Interpretation of Terms

Assume the moving coordinate system x-y be formed

of a plate with a slot in it where particle A can move

in relative to the moving coordinate system.

Assume a point P, instantly coincident with particle A

is fixed on the moving plane.
Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟𝑟𝑒𝑙 −𝜔2 Ԧ𝑟𝑟𝑒𝑙 + 2𝜔 × Ԧ𝑣𝑟𝑒𝑙 + Ԧ𝑎𝑟𝑒𝑙

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝑃/𝐵 + Ԧ𝑎𝐴/𝑃

Ԧ𝑎𝐴 = Ԧ𝑎𝑃 + Ԧ𝑎𝐴/𝑃

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝑎𝐴/𝐵


