ORTA DOĒU TEKNIK ÜNiversitesi
MIDDLE EAST TECHNICAL UNIVERSITY

ME 208 DYNAMICS

Dr. Ergin TÖNÜK

Department of Mechanical Engineering
Graduate Program of Biomedical Engineering

$$
\begin{gathered}
\frac{\text { tonuk@metu.edu.tr }}{\text { http://tonuk.me.metu.edu.tr }}
\end{gathered}
$$

Relative Velocity

$$
\begin{aligned}
& \vec{r}_{A}=\vec{r}_{B}+(x \hat{\imath}+y \hat{\jmath}) \\
& \dot{\vec{r}}_{A}=\dot{\vec{r}}_{B}+(\dot{x} \hat{\imath}+\dot{y} \hat{\jmath})+(x \dot{\hat{\imath}}+y \hat{\jmath}) \\
& \vec{v}_{A}=\vec{v}_{B}+\vec{v}_{r e l}+(x \hat{\imath}+y \hat{\jmath})
\end{aligned}
$$

$$
\dot{\hat{\imath}}=\vec{\omega} \times \hat{\imath}
$$

$$
\dot{\hat{\jmath}}=\vec{\omega} \times \hat{\jmath}
$$

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{\text {rel }}+(x \vec{\omega} \times \hat{\imath}+y \vec{\omega} \times \hat{\jmath})
$$

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{r e l}+\vec{\omega} \times(x \hat{\imath}+y \hat{\jmath})
$$

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{v}_{r e l}+\vec{\omega} \times \vec{r}_{r e l}
$$

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}
$$

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}
$$

Interpretation of Terms

Assume the moving coordinate system $x-y$ be formed of a plate with a slot in it where particle A can move in relative to the moving coordinate system.
Assume a point P, instantly coincident with particle A fixed on the moving plane. $\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}$ $\vec{v}_{A}=\underbrace{\vec{v}_{B}+\vec{v}_{P / B}}+\vec{v}_{A / P}$ $\vec{v}_{A}=\quad \vec{v}_{P} \quad+\vec{v}_{A / P}$

Transformation of a Time Derivative

 (Transport or Coriolis Theorem)Let \vec{V} be any vector quantity
$\vec{V}=V_{x} \hat{\imath}+V_{y} \hat{\jmath}$
The time derivative of this quantity in $\mathrm{X}-\mathrm{Y}$ coordinates is $\left(\frac{d \vec{V}}{d t}\right)_{X-Y}=\underbrace{\left(\dot{V}_{x} \hat{\imath}+\dot{V}_{y} \hat{\jmath}\right)}+\underbrace{\left(V_{x} \dot{\imath}+V_{y} \dot{\jmath}\right)}$ $\left(\frac{d \vec{V}}{d t}\right)_{X-Y}=\left(\frac{d \vec{V}}{d t}\right)_{x-y}+\vec{\omega} \times \vec{V}$

The term $\vec{\omega} \times \vec{V}$ is the difference between the time derivative of \vec{V} in the rotating ($\mathrm{x}-\mathrm{y}$) and non-rotating (X-Y) coordinate frames.

Relative Acceleration

Relative acceleration equation may be obtained either by taking time derivative of relative velocity equation
$\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}$
or by applying Transport/Coriolis Theorem.
$\frac{d}{d t} \vec{v}_{A}=\frac{d}{d t} \vec{v}_{B}+\frac{d}{d t}\left(\vec{\omega} \times \vec{r}_{r e l}\right)+\frac{d}{d t} \vec{v}_{r e} \sqrt{\dot{\hat{\imath}}=\vec{\omega} \times \hat{\imath}, \dot{\hat{\jmath}}=\vec{\omega} \times \hat{\jmath}}$
$\vec{a}_{A}=\vec{a}_{B}+\left(\overrightarrow{\vec{\omega}} \times \vec{r}_{r e l}+\vec{\omega} \times \frac{d}{d t}(x \hat{\imath}+y \hat{\jmath})\right]+\frac{d}{d t}(\hat{x} \hat{\imath}+\dot{y} \hat{\jmath})$
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}+\vec{\omega} \times[(\dot{x} \dot{\imath}+\dot{y} \hat{\jmath})+(\dot{x}+y \dot{\jmath})]+(\ddot{x} \hat{\imath}+\ddot{y} \hat{\jmath})+(\dot{x} \dot{\imath}+\dot{y} \dot{\hat{j}})$
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \hat{r}_{r e l}+2 \vec{\omega} \leqslant \vec{v}_{r e l}+\vec{a}_{r e l}$

Relative Acceleration

Relative acceleration equation may be obtained either by taking time derivative of relative velocity equation $\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}$
or by applying Transport/Coriolis Theorem.

$$
\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}
$$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$

Interpretation of Terms

Assume the moving coordinate system $\mathrm{x}-\mathrm{y}$ be formed of a plate with a slot in it where particle A can move in relative to the moving coordinate system.
Assume a point P, instantly coincident with particle A is fixed on the moving plane.
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{\text {rel }}-\omega^{2} \vec{r}_{\text {rel }}$
\downarrow
\Downarrow
$\vec{a}_{A}=\vec{a}_{B}+\underbrace{\downarrow}_{\vec{a}_{P / B}}+\underbrace{2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}}_{\vec{a}_{A / P}}$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$

Interpretation of Terms

Assume the moving coordinate system $\mathrm{x}-\mathrm{y}$ be formed of a plate with a slot in it where particle A can move in relative to the moving coordinate system.
Assume a point P, instantly coincident with particle A is fixed on the moving plane.
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{\text {rel }}-\omega^{2} \vec{r}_{\text {rel }}+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }}$

$\vec{a}_{A}=\vec{a}_{B}+\quad \vec{a}_{P / B}$	+	$\vec{a}_{A / P}$	
\downarrow			
$\vec{a}_{A}=$	\vec{a}_{P}	+	$\vec{a}_{A / P}$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$

Interpretation of Terms

Assume the moving coordinate system $\mathrm{x}-\mathrm{y}$ be formed of a plate with a slot in it where particle A can move in relative to the moving coordinate system.
Assume a point P, instantly coincident with particle A is fixed on the moving plane.
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{\text {rel }}-\omega^{2} \vec{r}_{\text {rel }}+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }}$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }}$ Coriolis Acceleration

Non-rotating frame: $\vec{\omega}=\overrightarrow{0}$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }}$ Coriolis Acceleration
Rotating frame: $\vec{\omega} \neq \overrightarrow{0}$

natgeotv.com

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$ Coriolis Acceleration

Rotating frame: $\vec{\omega} \neq \overrightarrow{0}$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$ Coriolis Acceleration
Rotating frame: $\vec{\omega} \neq \overrightarrow{0}$
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{\text {rel }}$ Coriolis Acceleration
Rotating frame: $\vec{\omega} \neq \overrightarrow{0}$

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}
$$

Interpretation of Terms

Assume the moving coordinate system $x-y$ be formed of a plate with a slot in it where particle A can move in relative to the moving coordinate system.
Assume a point P, instantly coincident with particle A fixed on the moving plane. $\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{r e l}+\vec{v}_{r e l}$ $\vec{v}_{A}=\underbrace{\vec{v}_{B}+\vec{v}_{P / B}}+\vec{v}_{A / P}$ $\vec{v}_{A}=\quad \vec{v}_{P} \quad+\vec{v}_{A / P}$

$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$

Interpretation of Terms

Assume the moving coordinate system $\mathrm{x}-\mathrm{y}$ be formed of a plate with a slot in it where particle A can move in relative to the moving coordinate system.
Assume a point P, instantly coincident with particle A is fixed on the moving plane.
$\vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{\text {rel }}-\omega^{2} \vec{r}_{\text {rel }}+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }}$

Sample Problem 5/ 16
At the instant represented, the disk with radial slot is rotating about O with a counterclockwise angular velocity of $4 \mathrm{rad} / \mathrm{s}$ which is decreasing at the rate of 10 $\mathrm{rad} / \mathrm{s}^{2}$. The motion of slider A is separately controlled, and at this instant, r is 150 mm , increasing with $\dot{r}=$ $125 \mathrm{~mm} / \mathrm{s}$ and $\ddot{r}=2025 \mathrm{~mm} / \mathrm{s}^{2}$. Determine the absolute velocity and acceleration of A for this position.

In the solution presented by the textbook the formula is directly applied. However one may think point P fixed on the disk and instantly coincident with the slider A and obtain absolute velocity and acceleration of point A.

$$
\vec{v}_{A}=\vec{v}_{P}+\vec{v}_{A / P}
$$

Since point P fixed on the rotating disk it makes fixed axis rotation about O,

$$
\vec{v}_{P}=\vec{\omega} \times \vec{r}_{P}=4 \hat{k} \times 0.15 \hat{\imath}=0.600 \hat{\jmath} \mathrm{~m} / \mathrm{s}
$$

$$
\vec{v}_{A / P}=\dot{\vec{r}}=0.125 \hat{\imath} \mathrm{~m} / \mathrm{s}
$$

$$
\vec{v}_{A}=0.6 \hat{\jmath}+0.125 \hat{\imath}=(0.1250 \hat{\imath}+0.600 \hat{\jmath}) \mathrm{m} / \mathrm{s}
$$

$$
\vec{a}_{A}=\vec{a}_{P}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}
$$

$$
\vec{a}_{P}=\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}=-10 \hat{k} \times 0.15 \hat{\imath}-4^{2} 0.15 \hat{\imath}
$$

$$
\vec{a}_{P}=(2.40 \hat{\imath}-1.500 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
$$

$$
\vec{a}_{A}=2.40 \hat{\imath}-1.500 \hat{\jmath}+2 * 4 \hat{k} \times 0.125 \hat{\imath}+2.025 \hat{\imath}
$$

$$
\vec{a}_{A}=(-0.375 \hat{\imath}-0.500 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
$$

5/150 (4 $\left.4^{\text {th }}\right), 5 / 151\left(5^{t h}\right)$, None $\left(6^{\text {th }}\right), 5 / 159\left(7^{\text {th }}\right)$, None $\left(8^{\text {th }}\right)$ The disk rotates about a fixed axis through O with angular velocity $\omega=5 \mathrm{rad} / \mathrm{s}$ and angular acceleration $\alpha=3 \mathrm{rad} / \mathrm{s}^{2}$ at the instant represented, in the directions shown. The slider A moves in the straight slot. Determine the absolute velocity and acceleration of A for the same instant, when y $=250 \mathrm{~mm}, \dot{y}=-600 \mathrm{~mm} / \mathrm{s}$ and $\ddot{y}=750 \mathrm{~mm} / \mathrm{s}^{2}$.

Again one may assume point P fixed on the disk, instantly coincident with A (or may apply the formula directly). Velocity analysis is required first since acceleration equations contain velocities too.

$$
\vec{v}_{A}=\vec{v}_{P}+\vec{v}_{A / P}
$$

Since point P on the disk makes fixed axis rotation about O , $\vec{v}_{P}=\vec{\omega} \times \vec{r}_{P}=5 \hat{k} \times(-0.15 \hat{\imath}+0.25 \hat{\jmath})=(-1.25 \hat{\imath}-0.75 \hat{\jmath}) \mathrm{m} / \mathrm{s}$ $\vec{v}_{A / P}=\dot{y} \hat{\jmath}=-0.6 \hat{\jmath} \mathrm{~m} / \mathrm{s}$
$\vec{v}_{A}=-1.25 \hat{\imath}-0.75 \hat{\jmath}-0.6 \hat{\jmath}=(-1.250 \hat{\imath}-1.350 \hat{\jmath}) \mathrm{m} / \mathrm{s}$
$\vec{a}_{A}=\vec{a}_{P}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$
$\vec{a}_{P}=\vec{\alpha} \times \vec{r}_{r e l}-\omega^{2} \vec{r}_{r e l}$
$\vec{a}_{P}=-3 \hat{k} \times(-0.15 \hat{\imath}+0.25 \hat{\jmath})-5^{2}(-0.15 \hat{\imath}+0.25 \hat{\jmath})$
$\vec{a}_{P}=(4.50 \hat{\imath}-5.80 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
$\vec{a}_{A}=4.5 \hat{\imath}-5.8 \hat{\jmath}+2 * 5 \hat{k} \times-0.6 \hat{\jmath}+0.75 \hat{\jmath}$
$\vec{a}_{A}=(-10.50 \hat{\imath}-5.05 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$

5/ $155\left(4^{\text {th }}\right), 5 / 156\left(5^{t h}\right), 5 / 165\left(6^{t h}\right)$, None $\left(7^{\text {th }}\right), 5 / 163\left(8^{\text {th }}\right)$

 Car B is rounding the curve with a constant speed of 54 km / h, and car A is approaching car B in the intersection with a constant speed of $72 \mathrm{~km} / \mathrm{h}$. Determine the velocity which car A appears to have to an observer riding and turning with car B. The $\mathrm{x}-\mathrm{y}$ axes are attached to car B. Is this apparent velocity the negative of velocity that B appears to have to a nonrotating observer in car A? The distance separating two cars at the instant depicted is 40 m.

Here use of a point P fixed in the moving coordinate system and instantly coincident with A is hard to visualize and direct application of formula is straight forward.
$v_{A}=72 \mathrm{~km} / \mathrm{h} \equiv 20 \mathrm{~m} / \mathrm{s}$
$v_{B}=54 \mathrm{~km} / \mathrm{h} \equiv 15 \mathrm{~m} / \mathrm{s}$
When motion is observed through B using $x-y$ coordinates it is rotating about the center of curvature of the road therefore

$$
\begin{aligned}
& \omega=\frac{v_{B}}{r}=\frac{15}{100}=0.1500 \mathrm{rad} / \mathrm{s}(C C W) \\
& \vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{\text {rel }}+\vec{v}_{\text {rel }} \\
& \vec{r}_{\text {rel }}=\vec{r}_{A / B}=-40 \hat{\imath} m \\
& 20 \hat{\imath}=15 \hat{\jmath}+0.15 \hat{k} \times-40 \hat{\imath}+\vec{v}_{\text {rel }} \\
& \vec{v}_{\text {rel }}=(20.0 \hat{\imath}-9.00 \hat{\jmath}) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Also consider car A at the center of curvature where $\vec{r}_{r e l}=\vec{r}_{A / B,}=$
$-100 \hat{\imath} m$ and about to hit car B where $\vec{r}_{r e l}=\vec{r}_{A / B}=\overrightarrow{0}$
For center of curvature:
$20 \hat{\imath}=15 \hat{\jmath}+0.15 \hat{k} \times-100 \hat{\imath}+\vec{v}_{\text {rel }}$
$\vec{v}_{\text {rel }}=(20.0 \hat{\imath}-0.00 \hat{\jmath}) \mathrm{m} / \mathrm{s}$
At the instant of hit:
$20 \hat{\imath}=15 \hat{\jmath}+0.15 \hat{k} \times \overrightarrow{0}+\vec{v}_{r e l}$
$\vec{v}_{\text {rel }}=(20.0 \hat{\imath}-15.00 \hat{\jmath}) \mathrm{m} / \mathrm{s}$

$$
\begin{aligned}
& \vec{a}_{A}=\vec{a}_{B}+\vec{\alpha} \times \vec{r}_{\text {rel }}-\omega^{2} \vec{r}_{\text {rel }}+2 \vec{\omega} \times \vec{v}_{\text {rel }}+\vec{a}_{\text {rel }} \\
& \vec{a}_{A}=\overrightarrow{0} \\
& \vec{a}_{B}=\omega^{2} \vec{r}=-0.15^{2} * 100 \hat{\imath}=-2.25 \hat{\imath} \mathrm{~m} / \mathrm{s}^{2} \\
& \vec{\alpha}=\overrightarrow{0}, \vec{\omega}=\overrightarrow{\operatorname{const}} \\
& \overrightarrow{0}=-2.25 \hat{\imath}+\overrightarrow{0}-0.15^{2} *-40 \hat{\imath}+2 * 0.15 \hat{k} \times(20.0 \hat{\imath}-9.00 \hat{\jmath})+\vec{a}_{\text {rel }} \\
& \vec{a}_{\text {rel }}=(1.350 \hat{\imath}-6.00 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

5/ $162\left(4^{t h}\right)$, None $\left(5^{t h}\right)$, None $\left(6^{t h}\right)$, None ($\left.7^{t h}\right)$, None $\left(8^{t h}\right)$ The slotted disk sector rotates with a constant counterclockwise angular velocity $\omega=3 \mathrm{rad} / \mathrm{s}$. Simultaneously the slotted arm OC oscillates about line OB (fixed to the disk) so that θ changes at a constant rate of 2 $\mathrm{rad} / \mathrm{s}$ except at the extremities of the oscillation during reversal of direction. Determine the total acceleration of the pin when $\theta=30^{\circ}$ and its first rate is positive (clockwise).

One may assume a point P fixed on the disk and instantly coincident with A $\vec{a}_{A}=\vec{a}_{P}+2 \vec{\omega} \times \vec{v}_{r e l}+\vec{a}_{r e l}$

$$
\vec{r}_{r e l}=(0.15 \tan \theta \hat{\imath}+0.15 \hat{\jmath})=(0.0866 \hat{\imath}+0.15 \hat{\jmath}) m
$$

$$
\vec{a}_{P}=\vec{\alpha}_{d i s k} \times \vec{r}_{r e l}-\omega_{d i s k}{ }^{2} \vec{r}_{r e l}
$$

$$
\vec{a}_{P}=\overrightarrow{0} \times(0.0866 \hat{\imath}+0.15 \hat{\jmath})-3^{2}(0.0866 \hat{\imath}+0.15 \hat{\jmath})
$$

$$
\vec{a}_{P}=(-0.779 \hat{\imath}-1.350 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
$$

$$
\vec{v}_{r e l}=\dot{\vec{r}}_{r e l}=\dot{x} \hat{\imath}=\frac{d}{d t}(0.15 \tan \theta \hat{\imath}+0.15 \hat{\jmath})
$$

$$
\vec{v}_{\text {rel }}=0.15 \dot{\theta} \sec ^{2} \theta \hat{\imath}=0.15 * 2 * \sec ^{2} 30^{\circ} \hat{\imath}=0.400 \hat{\imath} \mathrm{~m} / \mathrm{s}
$$

$$
\vec{a}_{r e l}=\dot{\vec{v}}_{r e l}=\ddot{x} \hat{\imath}=\frac{d}{d t}\left(0.15 \dot{\theta} \sec ^{2} \theta \hat{\imath}\right)=2 * 0.15 \dot{\theta} \sec ^{2} \theta \tan \theta=0.923 \hat{\imath} \mathrm{~m} / \mathrm{s} \text { for } \ddot{\theta}=0
$$

$$
\vec{a}_{A}=(-0.779 \hat{\imath}-1.350 \hat{\jmath})+2(-2 \hat{k}) \times 0.4 \hat{\imath}+0.923 \hat{\imath}=(0.1230 \hat{\imath}-1.050 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
$$ Alternatively you could directly apply the formula with the same terms.

$5 / 163\left(4^{\text {th }}\right), 5 / 168\left(5^{\text {th }}\right), 5 / 178\left(6^{\text {th }}\right), 5 / 176\left(7^{\text {th }}\right), 5 / 179\left(8^{\text {th }}\right)$ For the instant represented, link CB is rotating counterclockwise at a constant rate $\mathrm{N}=4 \mathrm{rad} / \mathrm{s}$, and its pin A causes a clockwise rotation of the slotted member ODE. Determine the angular velocity ω and angular acceleration α of ODE for this instant.

Assume a point P fixed on body $O D E$ instantly coincident with A.
$\vec{v}_{P}=\vec{v}_{A}+\vec{v}_{P / A}$
$\vec{v}_{P}=\vec{\omega}_{O D E} \times \vec{r}_{P / O}=\omega_{O D E} \hat{k} \times 0.12 \hat{\imath}=0.12 \omega_{O D E} \hat{\jmath}$
$\vec{v}_{A}=N \hat{k} \times \vec{r}_{A / C}=4 \hat{k} \times-0.12 \hat{\jmath}=0.48 \hat{\imath} \mathrm{~m} / \mathrm{s}$
$\vec{v}_{P / A}=v_{P / A}\left(\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}\right)$
$0.12 \omega_{O D E} \hat{\jmath}=0.48 \hat{\imath}+v_{P / A}\left(\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}\right)$
$\hat{\imath}: 0=0.48+v_{P / A} \cos 45^{\circ}, v_{P / A}=-0.679 \mathrm{~m} / \mathrm{s}$
$\hat{\jmath}: 0.12 \omega_{O D E}=v_{P / A} \sin 45^{\circ}, \omega_{O D E}=-4 \mathrm{rad} / \mathrm{s}$

Assume a point P fixed on body $O D E$ instantly

 coincident with A.$\vec{a}_{P}=\vec{a}_{A}+\vec{a}_{P / A}$
$\vec{a}_{P}=\vec{a}_{P_{t}}+\vec{a}_{P_{n}}$
$\vec{a}_{P}=\vec{\alpha}_{O D E} \times \vec{r}_{P / O}-\omega_{O D E}{ }^{2} \vec{r}_{P / O}$
$\vec{a}_{P}=\alpha_{O D E} \hat{k} \times 0.12 \hat{\imath}-4^{2} * 0.12 \hat{\imath}$
$\vec{a}_{P}=\left(-1.920 \hat{\imath}+0.12 \alpha_{O D E} \hat{\jmath}\right) \mathrm{m} / \mathrm{s}^{2}$
$\vec{a}_{A}=\vec{a}_{A_{t}}+\vec{a}_{A_{n}}=\vec{\alpha}_{C A} \times \vec{r}_{A / C}-N^{2} \vec{r}_{A / C}$
$\vec{a}_{A}=\overrightarrow{0} \times-0.12 \hat{\jmath}-4^{2} *-0.12 \hat{\jmath}=1.920 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}$

$\vec{a}_{P / A}=2 \vec{\omega}_{O D E} \times \vec{v}_{P / A}+\vec{a}_{r e l}$
$\vec{a}_{P / A}=2 *-4 \hat{k} \times-0.679\left(\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}\right)+a_{\text {rel }}\left(\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}\right)$
$\vec{a}_{P / A}=3.84(-\hat{\imath}+\hat{\jmath})+a_{r e l}\left(\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}\right)$
$\left(-1.92 \hat{\imath}+0.12 \alpha_{O D E} \hat{\jmath}\right)=1.92 \hat{\jmath}+3.84(-\hat{\imath}+\hat{\jmath})+a_{\text {rel }}\left(\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}\right)$
$\hat{\imath}:-1.92=-3.84+a_{\text {rel }} \cos 45^{\circ}$
$a_{\text {rel }}=2.72 \mathrm{~m} / \mathrm{s}^{2}$
$\hat{\jmath}: 0.12 \alpha_{O D E}=1.92+3.84+2.72 \sin 45^{\circ}$
$\alpha_{O D E}=64.0 \mathrm{rad} / \mathrm{s}^{2}$

