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5/163 (4th), 5/168 (5th), 5/178 (6th), 5/176 (7th), 5/179 (8th)

For the instant represented, link CB is rotating

counterclockwise at a constant rate N = 4 rad/s, and its pin

A causes a clockwise rotation of the slotted member ODE.

Determine the angular velocity  and angular acceleration

 of ODE for this instant.



Assume a point P fixed on body ODE instantly

coincident with A.

Ԧ𝑣𝑃 = Ԧ𝑣𝐴 + Ԧ𝑣𝑃/𝐴
Ԧ𝑣𝑃 = 𝜔𝑂𝐷𝐸 × Ԧ𝑟𝑃/𝑂 = 𝜔𝑂𝐷𝐸

෠𝑘 × 0.12 Ƹ𝑖 = 0.12𝜔𝑂𝐷𝐸 Ƹ𝑗

Ԧ𝑣𝐴 = 𝑁෠𝑘 × Ԧ𝑟𝐴/𝐶 = 4෠𝑘 × −0.12 Ƹ𝑗 = 0.48 Ƹ𝑖 𝑚/𝑠

Ԧ𝑣𝑃/𝐴 = 𝑣𝑃/𝐴 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗

0.12𝜔𝑂𝐷𝐸 Ƹ𝑗 = 0.48 Ƹ𝑖 + 𝑣𝑃/𝐴 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗

Ƹ𝑖: 0 = 0.48 + 𝑣𝑃/𝐴𝑐𝑜𝑠45°, 𝑣𝑃/𝐴 = −0.679 𝑚/𝑠

Ƹ𝑗: 0.12𝜔𝑂𝐷𝐸 = 𝑣𝑃/𝐴𝑠𝑖𝑛45°, 𝜔𝑂𝐷𝐸 = −4 𝑟𝑎𝑑/𝑠



Assume a point P fixed on body ODE instantly

coincident with A.
Ԧ𝑎𝑃 = Ԧ𝑎𝐴 + Ԧ𝑎𝑃/𝐴
Ԧ𝑎𝑃 = Ԧ𝑎𝑃𝑡 + Ԧ𝑎𝑃𝑛
Ԧ𝑎𝑃 = Ԧ𝛼𝑂𝐷𝐸 × Ԧ𝑟𝑃/𝑂 − 𝜔𝑂𝐷𝐸

2 Ԧ𝑟𝑃/𝑂
Ԧ𝑎𝑃 = 𝛼𝑂𝐷𝐸 ෠𝑘 × 0.12 Ƹ𝑖 − 42 ∗ 0.12 Ƹ𝑖
Ԧ𝑎𝑃 = −1.920 Ƹ𝑖 + 0.12𝛼𝑂𝐷𝐸 Ƹ𝑗 𝑚/𝑠2

Ԧ𝑎𝐴 = Ԧ𝑎𝐴𝑡 + Ԧ𝑎𝐴𝑛 = Ԧ𝛼𝐶𝐴 × Ԧ𝑟𝐴/𝐶 −𝑁2 Ԧ𝑟𝐴/𝐶

Ԧ𝑎𝐴 = 0 × −0.12 Ƹ𝑗 − 42 ∗ −0.12 Ƹ𝑗 = 1.920 Ƹ𝑗 𝑚/𝑠2

Ԧ𝑎𝑃/𝐴 = 2𝜔𝑂𝐷𝐸 × Ԧ𝑣𝑃/𝐴 + Ԧ𝑎𝑟𝑒𝑙
Ԧ𝑎𝑃/𝐴 = 2 ∗ −4෠𝑘 × −0.679 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗 + 𝑎𝑟𝑒𝑙 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗

Ԧ𝑎𝑃/𝐴 = 3.84 − Ƹ𝑖 + Ƹ𝑗 + 𝑎𝑟𝑒𝑙 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗
−1.92 Ƹ𝑖 + 0.12𝛼𝑂𝐷𝐸 Ƹ𝑗 = 1.92 Ƹ𝑗 + 3.84 − Ƹ𝑖 + Ƹ𝑗 + 𝑎𝑟𝑒𝑙 𝑐𝑜𝑠45° Ƹ𝑖 + 𝑠𝑖𝑛45° Ƹ𝑗

Ƹ𝑖: −1.92 = −3.84 + 𝑎𝑟𝑒𝑙𝑐𝑜𝑠45°
𝑎𝑟𝑒𝑙 = 2.72 𝑚/𝑠2

Ƹ𝑗: 0.12𝛼𝑂𝐷𝐸 = 1.92 + 3.84 + 2.72𝑠𝑖𝑛45°
𝛼𝑂𝐷𝐸 = 64.0 𝑟𝑎𝑑/𝑠2



Plane Kinetics of Rigid Bodies
Chapter 4: Kinetics of Systems of Particles

4/1 Introduction
Since a rigid body is assumed to be a continuous collection of

infinitely many particles of infinitesimal mass (continuum

approximation) with no change in the relative positions of

particles, the kinetic equations are derived using a general

system of particles (rigid or deformable or even flowing) in our

textbook. This approach is very general and when the rigidity

condition is imposed the equations will simplify to what we

will be using in Chapter 6 for kinetics of rigid bodies.



4/2 Generalized Newton’s Second Law

For a system of particles in a

volume, let Ԧ𝐹𝑖 be the

resultant of forces acting on

a particle 𝑚𝑖 due to sources

external to the system

boundary whereas Ԧ𝑓𝑖 be the

resultant of forces on 𝑚𝑖 due

to sources within the system

boundary. Newton’s second

law for the particle i is then:

Ԧ𝐹𝑖 + Ԧ𝑓𝑖 = 𝑚𝑖 Ԧ𝑎𝑖



Now recall the definition of 

mass center (center of mass) 

from statics:

𝑚Ԧ𝑟𝐺 =෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑟𝑖 = න
𝑚

Ԧ𝑟 𝑑𝑚

where

𝑚 =෍

𝑖=1

𝑛

𝑚𝑖 = න
𝑚

𝑑𝑚

Second time derivative of this 

equation yields

𝑚 ሷԦ𝑟𝐺 =෍

𝑖=1

𝑛

𝑚𝑖
ሷԦ𝑟𝑖 =෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑎𝑖



෍

𝑖=1

𝑛

Ԧ𝐹𝑖 + Ԧ𝑓𝑖 =෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑎𝑖 = 𝑚 ሷԦ𝑟𝐺 = 𝑚Ԧ𝑎𝐺

However when summed up within the

system boundary, due to Newton’s third

law, the action-reaction principle,

෍

𝑖=1

𝑛

Ԧ𝑓𝑖 = 0

This leads to the principle of motion of

center of mass:

෍

𝑖=1

𝑛

Ԧ𝐹𝑖 = 𝑚 Ԧ𝑎𝐺

which states that the acceleration of

center of mass of the system of particles

is in the same direction with the

resultant external force and is inversely

proportional with the total mass of the

system of particles. Please note that the

line of action of resultant of external

forces need not pass through the mass

center, G.



෍

𝑖=1

𝑛

Ԧ𝐹𝑖 = 𝑚 Ԧ𝑎𝐺

This vector equation may be

resolved in any convenient

coordinate system:

x-y,

n-t,

r-.

This is sufficient for rigid

bodies.



4/3 Work-Energy

For a particle of mass 𝑚𝑖 the work-energy relation:

𝑈𝑖 = ∆𝑇𝑖 + ∆𝑉𝑔𝑖
+ ∆𝑉𝑒𝑖

The work done by internal forces cancel each other

because for a rigid body the action and reaction

pairs have identical displacements therefore the

work done only by the external forces need to be

considered during summation. However for non-

rigid bodies displacements of action reaction pairs

may be different causing storage of elastic potential

energy or dissipation of mechanical energy which

we will not discuss in this course.

෍

𝑖=1

𝑛

𝑈𝑖 =෍

𝑖=1

𝑛

∆𝑇𝑖 +෍

𝑖=1

𝑛

∆𝑉𝑔𝑖
+෍

𝑖=1

𝑛

∆𝑉𝑒𝑖



For the system

𝑈1→2 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒 where 𝑈1→2 contains only the

work done by external forces.

∆𝑇 =෍

𝑖=1

𝑛
1

2
𝑚𝑖𝑣𝑖

2

Ԧ𝑣𝑖 = Ԧ𝑣𝐺 +
ሶԦ𝜌𝑖

𝑣𝑖
2 = Ԧ𝑣𝑖 ∙ Ԧ𝑣𝑖 = Ԧ𝑣𝐺 +

ሶԦ𝜌𝑖 ∙ Ԧ𝑣𝐺 +
ሶԦ𝜌𝑖 = 𝑣𝐺

2 + ሶ𝜌𝑖
2 + 2 Ԧ𝑣𝐺 ∙

ሶԦ𝜌𝑖
Substitution into kinetic energy expression yields

∆𝑇 =෍

𝑖=1

𝑛
1

2
𝑚𝑖𝑣𝐺

2 +෍

𝑖=1

𝑛
1

2
𝑚𝑖 ሶ𝜌𝑖

2 +෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑣𝐺 ∙
ሶԦ𝜌𝑖

∆𝑇 =
1

2
𝑚𝑣𝐺

2 +෍

𝑖=1

𝑛
1

2
𝑚𝑖 ሶ𝜌𝑖

2 + Ԧ𝑣𝐺 ∙෍

𝑖=1

𝑛

𝑚𝑖
ሶԦ𝜌𝑖



∆𝑇 =
1

2
𝑚𝑣𝐺

2 +෍

𝑖=1

𝑛
1

2
𝑚𝑖 ሶ𝜌𝑖

2 + Ԧ𝑣𝐺 ∙෍

𝑖=1

𝑛

𝑚𝑖
ሶԦ𝜌𝑖

but 

෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝜌𝑖 = 0

(definition of mass center so its time derivative is

zero too!)

∆𝑇 =
1

2
𝑚𝑣𝐺

2 +෍

𝑖=1

𝑛
1

2
𝑚𝑖 ሶ𝜌𝑖

2

The first term is translational kinetic energy of the

mass center, G, the second term is due to relative

motion of particles with respect to the mass center,

G.



4/4 Impulse Momentum

Linear Momentum
Ԧ𝐺𝑖 = 𝑚𝑖 Ԧ𝑣𝑖

Ԧ𝐺 =෍

𝑖=1

𝑛

Ԧ𝐺𝑖 =෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑣𝑖 =෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑣𝐺 +
ሶԦ𝜌𝑖

Ԧ𝐺 =෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑣𝐺 +
𝑑

𝑑𝑡
෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝜌𝑖 = Ԧ𝑣𝐺෍

𝑖=1

𝑛

𝑚𝑖 + 0 = 𝑚 Ԧ𝑣𝐺

ሶԦ𝐺 =
𝑑 Ԧ𝐺

𝑑𝑡
=

𝑑

𝑑𝑡
𝑚 Ԧ𝑣𝐺 = 𝑚 Ԧ𝑎𝐺 =෍ Ԧ𝐹

This is valid for constant mass ( ሶ𝑚 = 0) systems.



Angular Momentum

• Angular Momentum about a Fixed Point O

𝐻𝑂 =෍

𝑖=1

𝑛

Ԧ𝑟𝑖 ×𝑚𝑖 Ԧ𝑣𝑖

ሶ
𝐻𝑂 =෍

𝑖=1

𝑛

ሶԦ𝑟𝑖 ×𝑚𝑖 Ԧ𝑣𝑖 +෍

𝑖=1

𝑛

Ԧ𝑟𝑖 ×𝑚𝑖
ሶԦ𝑣𝑖 = 0 +෍

𝑖=1

𝑛

Ԧ𝑟𝑖 ×𝑚𝑖 Ԧ𝑎𝑖

ሶ
𝐻𝑂 =෍

𝑖=1

𝑛

Ԧ𝑟𝑖 × Ԧ𝐹𝑖 =෍

𝑖=1

𝑛

𝑀𝑂

According to Varignon’s principle sum of moments

of forces is equal to the moment of the resultant of

the forces.



Angular Momentum

• Angular Momentum about Mass Center G

𝐻𝐺 =෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖 Ԧ𝑣𝑖 , Ԧ𝑣𝑖 = Ԧ𝑣𝐺 +
ሶԦ𝜌𝑖

𝐻𝐺 =෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖 Ԧ𝑣𝐺 +
ሶԦ𝜌𝑖 = − Ԧ𝑣𝐺 ×෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝜌𝑖 +෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖
ሶԦ𝜌𝑖 = 0 +෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖
ሶԦ𝜌𝑖

ሶ𝐻𝐺 =෍

𝑖=1

𝑛

ሶԦ𝜌𝑖 ×𝑚𝑖
ሶԦ𝜌𝑖 +෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖
ሷԦ𝜌𝑖 = 0 +෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖
ሷԦ𝜌𝑖

Ԧ𝑎𝑖 = Ԧ𝑎𝐺 +
ሷԦ𝜌𝑖 ,

ሷԦ𝜌𝑖 = Ԧ𝑎𝑖 − Ԧ𝑎𝐺

ሶ𝐻𝐺 =෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖 Ԧ𝑎𝑖 − Ԧ𝑎𝐺 =෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖 Ԧ𝑎𝑖 + Ԧ𝑎𝐺 ×෍

𝑖=1

𝑛

Ԧ𝜌𝑖𝑚𝑖 =෍

𝑖=1

𝑛

Ԧ𝜌𝑖 × Ԧ𝐹𝑖 + 0

According to Varignon’s theorem

ሶ𝐻𝐺 =෍𝑀𝐺



Angular Momentum

• Angular Momentum about an Arbitrary Point P

𝐻𝑃 =෍

𝑖=1

𝑛

𝜌′𝑖 ×𝑚𝑖 Ԧ𝑣𝑖

𝜌′𝑖 = Ԧ𝜌𝐺 + Ԧ𝜌𝑖

𝐻𝑃 =෍

𝑖=1

𝑛

Ԧ𝜌𝐺 + Ԧ𝜌𝑖 ×𝑚𝑖 Ԧ𝑣𝑖 = Ԧ𝜌𝐺 ×෍

𝑖=1

𝑛

𝑚𝑖 Ԧ𝑣𝑖 +෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖 Ԧ𝑣𝑖 = Ԧ𝜌𝐺 × Ԧ𝐺 + 𝐻𝐺

𝐻𝑃 = 𝐻𝐺 + Ԧ𝜌𝐺 × Ԧ𝐺
One may write

෍𝑀𝑃 =෍𝑀𝐺 + Ԧ𝜌𝐺 ×෍ Ԧ𝐹

෍𝑀𝑃 =
ሶ

𝐻𝐺 + Ԧ𝜌𝐺 ×𝑚 Ԧ𝑎𝐺

Moment about an arbitrary point is time rate of angular

momentum about mass center plus moment of 𝑚 Ԧ𝑎𝐺 about P.



4/5 Conservation of Energy and Momentum

• Conservation of Energy
A conservative system does not lose mechanical energy due

to internal friction or other types of inelastic forces. If no

work is done on a conservative system by external forces

then

𝑈1→2 = 0 = ∆𝑇 + ∆𝑉𝑔 + ∆𝑉𝑒
• Conservation of Momentum
If for an interval of time 

෍ Ԧ𝐹 = 0,
ሶԦ𝐺 = 0, ∆ Ԧ𝐺 = 0

Again for an interval of time if 

෍𝑀𝐺 = 0, ሶ𝐻𝐺 = 0, ∆𝐻𝐺 = 0

෍𝑀𝑂 = 0, ሶ𝐻𝑂 = 0, ∆𝐻𝑂 = 0



Appendix B: Mass Moment of Inertia

B/1 Mass Moment of Inertia about an Axis
𝑎𝑡 = 𝑟𝛼
𝑑𝐹 = 𝑟𝛼𝑑𝑚
Moment of this force about O-O

𝑑𝑀 = 𝑟𝑑𝐹 = 𝑟2𝛼𝑑𝑚
For all particles in the rigid body

𝑀 = න
𝑚

𝑑𝑀 = න
𝑚

𝑟2𝛼𝑑𝑚 = 𝛼න
𝑚

𝑟2𝑑𝑚

Mass moment of inertia of the body about axis O-O is

defined as

𝐼𝑂 ≡ න
𝑚

𝑟2𝑑𝑚 𝑘𝑔 ∙ 𝑚2

Mass is a resistance to linear acceleration, mass

moment of inertia is a resistance to angular

acceleration.



For discrete system of particles

𝐼𝑂 =෍

𝑖=1

𝑛

𝑟𝑖
2𝑚𝑖

For constant density (homogeneous) rigid bodies

𝐼𝑂 = 𝜌න
𝑉

𝑟2𝑑𝑉

Radius of Gyration

𝑘𝑥 ≡
𝐼𝑥
𝑚
, 𝐼𝑥 = 𝑘𝑥

2𝑚

Radius of gyration is a measure of mass

distribution of a rigid body about the axis. A

system with equivalent mass moment of inertia is

a very thin ring of same mass and radius kx.



Transfer of Axis (Parallel Axis Theorem)

𝐼𝑥 = 𝐼𝐺 +𝑚 𝑔𝑋 2

𝑘𝑥
2 = 𝑘𝐺

2 + 𝑔𝑋 2

Composite Bodies

Mass moment of inertia of a composite body about

an axis is the sum of individual mass moments of

each part about the same axis (which may be

calculated utilizing parallel axis theorem if mass

moment of inertia of each part is known about its

mass center).



B/10 (4th), None (5th), B/14 (6th), None (7th), None (8th) 

Calculate the mass moment of inertia about the axis O-O

for the steel disk with the hole.

𝐼𝑂 = 𝐼𝑂𝑠𝑜𝑙𝑖𝑑 − 𝐼𝑂ℎ𝑜𝑙𝑒
For thin disks

𝐼𝐺 =
1

2
𝑚𝑟2

𝐼𝑂𝑠𝑜𝑙𝑖𝑑 = 𝐼𝐺 =
1

2
𝑚𝑟2 =

1

2
𝜌𝜋𝑟𝑑

2𝑡𝑟𝑑
2 = 2.96 𝑘𝑔.𝑚2

𝐼𝑂ℎ𝑜𝑙𝑒 = 𝐼𝐺 +𝑚𝑑2 =
1

2
𝑚𝑟2 +𝑚𝑑2 =

1

2
𝜌𝜋𝑟ℎ

2𝑡𝑟ℎ
2 + 𝜌𝜋𝑟ℎ

2𝑑2

= 0.348 𝑘𝑔.𝑚2

𝐼𝑂 = 2.96 − 0.348 = 2.61 𝑘𝑔.𝑚2

𝑘𝑂 =
𝐼𝑂
𝑚

=
2.61

𝜌𝜋𝑟𝑑
2𝑡 − 𝜌𝜋𝑟ℎ

2𝑡
= 0.230 𝑚



Chapter 6: Plane Kinetics of Rigid Bodies

6/1 Introduction
In this chapter we will deal with relations among external

forces and moments, and, translational and rotational

motions of rigid bodies in plane motion.

We will write two force and one moment equation (or

equivalent) for the plane motion of rigid bodies.

The equations derived in Chapter 4 will be simplified for a

rigid body and used. Kinematic relations developed in

Chapters 2 and 5 will be utilized.

Drawing correct free body diagrams is essential in

application of Force-Mass-Acceleration method. The other

two methods, similar to kinetics of particles are Work-

Energy and Impulse-Momentum.



A. Direct Application of Newton’s Second 

Law – Force Mass Acceleration Method 

for a Rigid Body

6/2 General Equations of Motion

෍ Ԧ𝐹 =
ሶԦ𝐺 = 𝑚 Ԧ𝑎𝐺

෍𝑀𝐺 =
ሶ

𝐻𝐺 = 𝐼𝐺 Ԧ𝛼

These are known as Euler’s first and second laws.

By using statics information one may replace the forces on a

rigid body by a single resultant force passing through mass

center and a couple moment. The equivalent force causes linear

acceleration of the mass center in the direction of force, the

couple moment causes angular acceleration about the axis of the

couple moment.



Plane Motion Equations

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎𝐺

𝐻𝐺 =෍

𝑖=1

𝑛

Ԧ𝜌𝑖 ×𝑚𝑖
ሶԦ𝜌𝑖 = න

𝑚

Ԧ𝜌 × ሶԦ𝜌𝑑𝑚

For a rigid body Ԧ𝜌𝑖 = 𝑐𝑜𝑛𝑠𝑡 therefore
ሶԦ𝜌 = 𝜔 × Ԧ𝜌

Ԧ𝜌 × ሶԦ𝜌 = Ԧ𝜌 × 𝜔 × Ԧ𝜌 = − Ԧ𝜌 × Ԧ𝜌 × 𝜔 = 𝜌2𝜔

𝐻𝐺 = න
𝑚

𝜌2𝜔𝑑𝑚 = 𝜔න
𝑚

𝜌2𝑑𝑚 = 𝜔𝐼𝐺

For a rigid body IG is constant so 
ሶ

𝐻𝐺 = 𝐼𝐺
ሶ𝜔 = 𝐼𝐺 Ԧ𝛼

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎𝐺 ,෍𝑀𝐺 = 𝐼𝐺 Ԧ𝛼



෍ Ԧ𝐹 = 𝑚 Ԧ𝑎𝐺

෍𝑀𝐺 = 𝐼𝐺 Ԧ𝛼

Euler’s laws of motion, generalization of Newton’s second

law for particles to rigid bodies approximately 50 years

after Newton.

For plane motion the force equation may be resolved in x-y,

n-t or r- coordinates whichever is suitable. For moment

equation it is always normal to the plane of motion

therefore can be expressed in scalar form as CCW or CW.

The moment equation has an alternative derivation yielding

the same result. Please go over it in the textbook.



Alternative Moment Equation

Sometimes it may be more convenient to take moment 

about another point rather than the mass center G. In 

that case

෍𝑀𝑃 =
ሶ

𝐻𝐺 + Ԧ𝜌𝐺 ×𝑚 Ԧ𝑎𝐺 , Ԧ𝜌𝐺 = 𝑃𝐺

This equation can be written as 

෍𝑀𝑃 = 𝐼𝐺𝛼 +𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑚 Ԧ𝑎𝐺 𝑎𝑏𝑜𝑢𝑡 𝑃

If point P is a fixed point (like the axis of rotation) then

෍𝑀𝑂 = 𝐼𝐺𝛼 +𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑚 Ԧ𝑎𝐺 𝑎𝑏𝑜𝑢𝑡 𝑃, 𝑎𝐺𝑡 = 𝑂𝐺 𝛼,

𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑚 Ԧ𝑎𝐺 𝑎𝑏𝑜𝑢𝑡 𝑃 = 𝑂𝐺 2𝛼

෍𝑀𝑂 = 𝐼𝐺𝛼 + 𝑂𝐺 2𝑚𝛼 = 𝐼𝐺 +𝑚 𝑂𝐺 2 𝛼 = 𝐼𝑂𝛼



In unconstrained motion the two components of

acceleration of the mass center and angular acceleration

are independent of each other as in the case of a rocket.

In constrained motion due to kinematic restrictions there

are relations among two components of the acceleration of

mass center and the angular acceleration of the body.

Therefore these kinematic constraint equations have to be

determined using methods developed in Chapter 5. There

are also reaction forces due to constraints in the direction

of restricted motions which should be included in the free

body diagram.



Analysis Procedure

Kinematics: Determine Ԧ𝑣𝐺 , Ԧ𝑎𝐺 ,  and  (or the

kinematic relations among them) if possible.

Diagrams: Draw proper free body and kinetic

diagrams.

Equations of motion: Any force or acceleration in

the direction of positive coordinate is positive.

Count the number of available independent

equations and number of unknowns to be

determined.


