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5/163 (4"), 5/168 (5), 5/178 (6%), 5/176 (7"), 5/179 (8"
For the instant represented, link CB 1is rotating
counterclockwise at a constant rate N = 4 rad/s, and its pin
A causes a clockwise rotation of the slotted member ODE.
Determine the angular velocity ® and angular acceleration
o of ODE for this instant.




Assume a point P fixed on body ODE instantly
coincident with A.

Up = Vg + Up/a

Up = Wopg X Tpj0 = Wopek X 0.12f = 0.12w¢pgf

Uy = Nk X 7y)c = 4k X —0.12] = 0.48i m/s

Up/a = Vp;a(c0s45°T + 5in45°])

0.12wppgj = 0.480 + vp /4 (c0s45°T + sin45°))

: 0 =048 + vp/4c0545° vp/y = —0.679m/s
Ji 0.12w0pg = Vp/aSind5d°, wopg = —4rad/s | -




Assume a point P fixed on body ODE instantly
coincident with A. 1

mm

ap = aA + ap/A

aAp = apt + apn

dp = dopg X 77P/o — wODEZFP/O

dp = apppk x 0127 — 4% x 0.121

dp = (—1.9201 + 0.12a,pef) m/s?

Ay = Ag, + Gy, = Qca X Tyic — NZFA/C

Gy, =0x—0.12] — 4% x —0.12] = 1.920] m/s?
dp/a = 2501315 X Upja + rep

dp/a = 2 * —4k X —0.679(c0s45°T + sin45°]) + a,¢;(c0s45°1 + sin45°f)
dp/a = 3.84(—=1+ ) + ¢ (c0s45°T + 5in45°])

(=1.92i + 0.12appg]) = 1.92] + 3.84(—i + }) + a,0,(cos45° + sind5°)
I: —1.92 = —3.84 + a,,;c0s45°

Arep = 2.72 m/s?

J: 0.12appr = 1.92 + 3.84 + 2.72sin45°

topg = 64.0 rad/s?




Plane Kinetics of Rigid Bodies

Chapter 4: Kinetics of Systems of Particles
4/1 Introduction

Since a rigid body is assumed to be a continuous collection of
infinitely many particles of infinitesimal mass (continuum
approximation) with no change in the relative positions of
particles, the kinetic equations are derived using a general
system of particles (rigid or deformable or even flowing) in our
textbook. This approach is very general and when the rigidity
condition is imposed the equations will simplify to what we
will be using in Chapter 6 for kinetics of rigid bodies.

g

dm™,




4 /2 Generalized Newton’s Second Law

For a system of particles in a

volume, let F be the p
resultant of forces acting on
a particle m; due to sources
external to the system

m;

boundary whereas fl be the
resultant of forces on m; due
to sources within the system
boundary. Newton’s second
law for the particle i1is then:
Fi —+ fl = ‘mic_il-

System boundary




Now recall the definition of
mass center (center of mass)

from statics:
n

mFG — mi‘Fi =f de
i=1 m
where
n
m=2mi =f dm
i=1 m

Second time derivative of this

equation yields
n

n
3 e -
mrg = z m;r; = z m;Qa;
=1

=1

System boundary



n n
2(131 + fl) = z m;d; = mre; = mdg

However when summed up within the
system boundary, due to Newton’s third
law, the action-reaction principle,

n
i-s
i=1

This leads to the principle of motion of

center of mass:
n

z ﬁi = mc_iG

i=1

which states that the acceleration of
center of mass of the system of particles
is in the same direction with the
resultant external force and is inversely
proportional with the total mass of the ..
system of particles. Please note that the 0%
line of action of resultant of external
forces need not pass through the mass
center, G.

System boundary




n
= -
z F; = mag
i=1

This vector equation may be
resolved in any convenient
coordinate system:

r-0.
This is sufficient for rigid [
bodies. -

System boundary




4/3 Work-Energy

For a particle of mass m; the work-energy relation:
Ui — ATL + AVQL + AVei

The work done by internal forces cancel each other
because for a rigid body the action and reaction
pairs have identical displacements therefore the
work done only by the external forces need to be
considered during summation. However for non-
rigid bodies displacements of action reaction pairs
may be different causing storage of elastic potential
energy or dissipation of mechanical energy which
we will not discuss in this course.

n n n n
ZUL' :zATi +ZAV91 +zAVel
=1 =1 =1 =1



For the system
Ui, = AT + AV, + AV, where U, Contams only the

work done by external forces.

AT = szvl

System boundary

- 5
Vi = Vg + Pj

vizzﬁi'ﬁiz(ﬁG'l'pl) (vG'l'pl)—vG +pl + 27 - pl

Substitution into kinetic energy expression yields

AT = Ezmiv(;z ~+ Ezmi,@iz + EmiﬁG ) :51'
i=1 i i=1 i;l
1 1 .
AT = Evaz + Ezmipiz + Vg 'Emiﬁi
=1 =1



System boundary

i=1
(definition of mass center so its time derivative is
zero too!)

1o,
AT = Eva + zzmipi
i=1

The first term is translational kinetic energy of the
mass center, G, the second term is due to relative
motion of particles with respect to the mass center,

G.



4/4 Impulse Momentum
Linear Momentum

N
G; = mv;
n n n
~ —_ ~ — - — System boundary
=3 =S m =3
=1 =1 =1
n n n
é’ _ > d 5> o
=/ MV * 2 ) TPy = Vg
=1 =1 i=1
é) G d ( - ) - =
= ——=——\mv — A, =
dt dt° ¢ G

This is valid for constant mass (m = 0) systems.



Angular Momentum
e Angular Momentum about a Fixed Point O

n "lf -
o - -
HO = E i X M;V; | o
i=1 ¥
n n -
HO — 7:)1, X mlﬁl + Fl X mlﬁl — O + ' f)rlx miSa_;iu_-m boundary
=1 =1 =1 \\\
n n )
= N - —
HO — (8] X i — MO
=1 =1

According to Varignon’s principle sum of moments
of forces is equal to the moment of the resultant of
the forces.



Angular Momentum
e Angular Momentum about Mass Center G

n
Hg = plxmivl'vl_vG + P; )
System boundary
1=1
n n n n
G = Z,Oi x m;(Vg + p;) = — Vg szipi +z,0i Xm;p; =0 +Z,0i X m;p;

=1 i=1 =1 i=1
n n n

Hg =zp m;p; + Pi X M;p; = +zplxm1pl
i=1 =1 =1

— aG + pu pl —

Accordlng to Varignon’s theorem

ﬁG :ZMG



Angular Momentum
e Angular Momentum about an Arbitrary Point P

n
Hp = z ?i X m; v
=1
,0 [ pG + pl
HP—Z(IOG'l'pl)XmUL Pe X Zmlvl-l_zplxmvl pGXG‘I'HG
Hp = HG + pG X G F, F:i my
: F R TN
One may write =i N \
— — N - - ‘\ | \
> M=) Mg+psx ) F A ...
.\\\_p_ ar,
z MP - ﬁG + P X mdg ";Q.;li;;‘;;:.;;f;/

()(('l.xc(ll
Moment about an arbitrary point is time rate of angular
momentum about mass center plus moment of ma; about P.



4/5 Conservation of Energy and Momentum

* Conservation of Energy

A conservative system does not lose mechanical energy due
to internal friction or other types of inelastic forces. If no
work is done on a conservative system by external forces
then

Ui, = 0 = AT + AV, + AV

* Conservation of Momentum
If for an interval of time

Zﬁ' =0,6=0,AG =0
Again for an interval of time if

ZMG 0 H.=0AH. =0



Appendix B: Mass Moment of Inertia
B/1 Mass Moment of Inertia about an Axis

a; =ra O

dF = radm UCP .

Moment of this force about O-O ' '

dM = rdF = r*adm -

For all particles in the rigid body | /

M :f dM :f réadm = af r¢dm (‘) ro.dm
m m m

Mass moment of inertia of the body about axis O-O is
defined as

I, Ej r’dm [kg - m?]
m

Mass 1is a resistance to linear acceleration, mass
moment of inertia is a resistance to angular
acceleration.



For discrete system of particles
n

IO — Z Tizmi
=1

For constant density (homogeneous) rigid bodies
0

I, = p [ 24y el
V

| m

Radius of Gyration

=~ 7 —

V m (‘) rodm

=1, = kxzm
Radius of gyration 1s a measure of mass
distribution of a rigid body about the axis. A
system with equivalent mass moment of inertia is
a very thin ring of same mass and radius k..

Ko




| m

| ~ 7 —

Transfer of Axis (Parallel Axis T heorem) /
I — IG + mng|2 rodm
ky® =k + |gX|?

Composite Bodies

Mass moment of inertia of a composite body about
an axis is the sum of individual mass moments of
each part about the same axis (which may be
calculated utilizing parallel axis theorem if mass
moment of inertia of each part is known about its
mass center).



B/ 10 (4™"), None (5%), B/ 14 (6"%), None (7"), None (8"
Calculate the mass moment of inertia about the axis O-O
for the steel disk with the hole.

P 150 mm

lo = IOSOlid o IOhole
For thin disks

1
I, = zmrz
I =] I “trg® =296k
Osolia — 16 — Zmr = an’rd Td —1 . gm
Ioyo1e = g +md? = Emrz + md?® = Epnrhztrhz + prry 2 d?
= 0.348 kg. m?
I, = 2.96 — 0.348 = 2.61 kg.m?

I, 2.61

ko= |2 = . — = 0.230m

VTfl VIDTL'Td t—pm‘h t




Chapter 6: Plane Kinetics of Rigid Bodies
6/1 Introduction

In this chapter we will deal with relations among external
forces and moments, and, translational and rotational
motions of rigid bodies in plane motion.

We will write two force and one moment equation (or
equivalent) for the plane motion of rigid bodies.

The equations derived in Chapter 4 will be simplified for a
rigid body and used. Kinematic relations developed in
Chapters 2 and 5 will be utilized.

Drawing correct free body diagrams is essential in
application of Force-Mass-Acceleration method. The other
two methods, similar to kinetics of particles are Work-
Energy and Impulse-Momentum.



A. Direct Application of Newton’s Second
Law — Force Mass Acceleration Method
for a Rigid Body

6/2 General Equations of Motion

Zﬁ:é):ma(;

ZMG :ﬁG :IGC_E

These are known as Euler’s first and second laws.

By using statics information one may replace the forces on a
rigid body by a single resultant force passing through mass
center and a couple moment. The equivalent force causes linear
acceleration of the mass center in the direction of force, the
couple moment causes angular acceleration about the axis of the
couple moment.



Plane Motion Equations

Zﬁzmaa
HG_Zplxmlpl_f p X pdm M

For a r1g1d body |p;| = const therefore F,
p=wXp
PXP=pXdXp=—pXx (X&) =pd

For a rigid body I; is constant so

ﬁG — 165 — IG&

2ﬁ=m&6,21\_4)(; =IGC_(>



. . . F‘
Euler’s laws of motion, generalization of Newton’s second

law for particles to rigid bodies approximately 50 years
after Newton.

For plane motion the force equation may be resolved in x-y,
n-t or r-0 coordinates whichever is suitable. For moment
equation it is always normal to the plane of motion
therefore can be expressed in scalar form as CCW or CW.
The moment equation has an alternative derivation yielding
the same result. Please go over it in the textbook.



Alternative Moment Equation
Sometimes it may be more convenient to take moment
about another point rather than the mass center G. In

that case om
— — N N N — F, z . // 'lg\— "——-‘\.\
Mp = Hg + pg X mag, pg = PG "Nt (S
: & N?" ,’G ‘ System
. . . . | bound
This equation can be written as X/
.
z Mp = I;a + Moment of md; about P [ i

If point P is a fixed point (like the axis of rotation) then

ZMO = Iga + Moment of mdg; about P,as, = |0G|a,

Moment of md; about P = |0G|*«

ZMO =Il.a+ |0G|*ma = (I; + m|0G|?)a = I a



n

In unconstrained motion the two components of
acceleration of the mass center and angular acceleration
are independent of each other as in the case of a rocket.

In constrained motion due to kinematic restrictions there
are relations among two components of the acceleration of
mass center and the angular acceleration of the body.
Therefore these kinematic constraint equations have to be
determined using methods developed in Chapter 5. There
are also reaction forces due to constraints in the direction
of restricted motions which should be included in the free
body diagram.



Analysis Procedure

Kinematics: Determine v;, d;, ® and o (or the
kinematic relations among them) if possible.
Diagrams: Draw proper free body and Kkinetic
diagrams.

Equations of motion: Any force or acceleration in
the direction of positive coordinate is positive.
Count the number of available independent
equations and number of unknowns to be
determined.

Free-Body Diagram Kinetic Diagram



