OUTPUT PRIMITIVES

CEng 477
Introduction to Computer Graphics
METU, 2007

Recap: The basic forward projection pipeline:

Modeling

) Viewing
‘ Transformations Transformations

3D View
Scene

WCS

2D/3D Device

NDCS

VCS

Rasterization

— [_P_|——{Clip | —[Normalize]

Projection DCS

2D Image SCS

Viewing and

Qection Coordinates Ej/

/ |
Modeling \ ! Video Monitor
Coordinates @ J

|
/ Normalized 1 Plotter
4+ World Coordinates
Ve Coordinates
Other Output
) Device
Coordinates
Figure 2-60

The transformation sequence from modeling coordinates to device coordinates for

a three-dimensional scene. Object shapes can be individually defined in modeling-
coordinate reference systems. Then the shapes are positioned within the world-coordinate
scene. Next, world-coordinate specifications are transformed through the viewing pipeline
to viewing and projection coordinates and then to normalized coordinates. At the final step,
individual device drivers transfer the normalized-coordinaterepresentation of the scene to
the output devices for display.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker.
ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Screen vs. World coordinate systems

. Objects positions are specified in a Cartesian
coordinate system called World Coordinate
System which can be three dimensional and
real-valued.

. Locations on a video monitor are referenced
In INteger screen coordinates. Therefore
object definitions has to be scan converted to
discrete screen coordinate locations to be
viewed on a video monitor.

Specification of a 2D WCS in OpenGL

glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluOrtho2D (xXmin, Xxmax, ymin, ymax);

. ODbjects that are

specified within these

coordinate limits will be

%
displayed within the \
\

OpenGL window.

X max

Output Primitives

. Graphic SW and HW provide subroutines to
describe a scene In terms of basic geometric
structures called output primitives.

. Output primitives are combined to form
complex structures

. Simplest primitives
- Point (pixel)

- Line segment

Scan Conversion

. Converting output primitives into frame
buffer updates. Choose which pixels contain
which intensity value.

. Constraints

- Straight lines should appear as a straight line
—- primitives should start and end accurately

- Primitives should have a consistent brightness
along their length

- They should be drawn rapidly

OpenGL Point Functions

. giBegin (GL_POINTS);
glVertex2i(50, 100);
glVertex2i(75, 150);
glVertex2i(100, 200);

glEnd();

OpenGL Line Functions

. glBegin (GL_LINES);

glVertex2iv(
glVertex2iv(
glVertex2iv(
glVertex2iv(
glVertex2iv(

glEnd();

n1);
02);
03);
04);

05);

OpenGL Line Functions

. glBegin (GL _LINE_STRIP);

glVertex2iv(
glVertex2iv(
glVertex2iv(
glVertex2iv(
glVertex2iv(

glEnd();

n1);
02);
03);
04);

05);

p3

OpenGL Line Functions

. glBegin (GL_LINE_LOOP);

glVertex2iv(
glVertex2iv(
glVertex2iv(
glVertex2iv(
glVertex2iv(

glEnd();

n1);
02);
03);
04);

05);

p3

Line Drawing Algorithms

. Simple approach:
sample a line at discrete positions at one coordinate
from start point to end point, calculate the other
coordinate value from line equation (slope-intercept
line equation). O

y=mx+b or O

m m ali _©
_ | O
. yend ystart
— X Is this correct?

If m>1, Iincrementy and find X
If m<i, Increment x and find y

Digital Differential Analyzer

. Simple approach: too many floating point
operations and repeated calculations

. Calculate V.., from Y, fora AX value

Ay=mAX VY,.,=y,+tm for Ax=1, 0<m<1

Ay 1
AXIF xk+1:xk+E for Ay=1, m=1

DDA

. Is faster than directly implementing y=mx+b.
No floating point multiplications. We have
floating point additions only at each step.

. But what about round-off errors?

. Can we get rid of floating point operations
completely?

Bresenham's Line Algorithm

. DDA: Stlll floating point operations

Assume ‘m‘ <1
If already at (x,, y,), choices:
(x, +Ly,) itd, . <d

lower upper
y=mx+b (x, +Ly, +1 itd, . >d

lower upper

y=m(x, +)+b=> Aipper =Y =Y =m(x, +1)+b—y,
k Aper =V + D=y =y +1=m(x, +1)=b
= 2m(x, +1) =2y, +2b~1

— dlower o d

dupper

Ay — y end _y start
Ax x ., —Xx

end start

m =

xk xk+1 xk+2 xk+3

define p, = Ax(d)=2Ayx, —2Axy, +c
c=2Ay+Ax(2b—1) 1independent from pixel position

lower upper

it d,,... <d,,. = P, <0= choose y,

lower

else choose y, +1

at step k+1:
Pri1 = 2Ay°xk+1 _2Ax'yk+1 +C
Pia — P =280(x; = X)) = 28%(y, . — Vi)

X =X H1= pry = pp + 280y =2Ax(y . — yi)
/ \

0 1if p, was negative 1 if p, was positive
to calculate p, at the starting pixel position (x,,y,)
Do =2Ay-x,—2Ax-y, +c
c=2Ay+Ax(2b-1)

bzyo—%xo = c=2Ay+2Axy, —2Ayx, — Ax = p, = 2Ay — Ax

Bresenham’s Line-Drawing Algorithm

Input: two line end points (x,y,) and (x,,,v.,,)
draw (x;,)
pk<—2Ay-Ax; XXy
while x,<x, ,
XX, 1
If p,<0choose y,
Vi1 Ve Prr D20y
else choose y,+1
ka(—yk-I—l; D1 DPr T 2Ay - 2Ax
draw (x;.;,Vi+1)
xk<—xk+1

PiPr+1

Example from the textbook

. Using Bresenham’s algorithm digitize the line
with endpoints (20,10) and (30,18)

Example continued...

L 2
ol
/
//
pd
@
20 21 22 25 30

Plotted pixels

18

Xl

20 21 22

25

30

Circle Generation

. Circles can be approximated by a set of

straight lines.

(a) (b)

(c)

Figure 3-15

A circular arc approximated with (a) three straight-line segments,

(b) six line segments, and (c) twelve line segments.

But, how many lines do
we need for an acceptable
representation?

How do we determine end
points of lines?

Circle Drawing in OpenGL

. Routines for drawing circles or ellipses are
not included in the OpenGL core library.

. GLU (OpenGL Utility) library has some
routines for drawing spheres, cylinders, B-
splines. Rational B-splines can be used to
display circles and ellipses.

Circle Generation

(X—Xo)*+(y—yq)°=r"

unit stepsin x = y=y01\/r2—(X—Xo)2

. Computationally complex

. Non uniform spacing 000

. Polar coordinates: @

X=r COS(0)+ X,

y=rsin(0)+Y,

. Fixed angular step size to have equally
spaced points

X, =r cosd X,.,=rcos(d+dao)
y,=rsineg vy, ,=rsin(e+do)

— roosdcosded—rsingsindéo
= X, cosdg—y,sindé
Y..1 = rsingcosdo+rcosdsindg
= y.cosdo+xsindé

Xk+1

fixed d8 so compute cosdd and sind@ initidly

. Computation can be reduced by considering

symmetry of circles:

. Still too complex,
multiplications,
trigonometric calculations

(_y’X)

(y.X)

(-,y) 9/ (X,y)

(-X,-Y)

-Y,-X)

/ (%)

(y,'X)

. Bresenham's circle generation algorithm
Involves simple integer operations (comparing

sguares of pixel separation distances)

Midpoint Circle Algorithm avoids squaring and

generates the same pixels as Bresenhams’s

algorithm.

Midpoint Circle Algorithm

. Consider the second octant. AN
Increment x , decide on y
X
2+y2—r2=0 select which of 2 pixels,
Vi 4 Y
3 (et Ly or (xtLy-1)
q V2N are closer to the circle
Vi Midpoint _ _
\ by evaluating the circle
N ction at the midpoint.

X, x,+1lx,+2

(=0 if on the circle choose y, —1

f(x,y)=x>+y*—r’3>0 if outside the circle choose y, —1

<0 if 1nside the circle choose y,
| 1. , .17
p.=f X +1y,—=)=(x+1)+Hy —=) -1

2 2
1. . , 12
pk+1:f(Xk+1+1’yk+1_§):(xk‘|‘1+1) ‘I‘(yk+1_? —TI
_ | 1.2 | 1 2
pk+1_pk:(xk+1+1)2+(yk+1_§) _rz_(xk+1)2_(yk_?) +r?
1 1
pk+1:pk+xi+4xk+4+3’i+1_3’k+1+2_Xi_zxk_1_Yi-l—)’k_z

D = P H2(x, +1)+ (yl§+1 _yif) — (Ve — V) +1

where y,., IS either y, or y,—1 depending on the sign of p,.

It pi<0 priy = pit 2x +3

It P20 proy = ot 20— 2y, +5
computing p,at (xo,y,) = (0.r)

P =f<1,r—§>

1
=1+(r—=)-r’
(r=2)

:%—r if r 1s integer p, = 1—r

Midpoint Circle Algorithm

Input: radius r and circle center (x_y,)
draw(0+x,r+y.) (add x.and y_ before plotting)
p—1-r; x,<0; y,r,
while x,<y,
If p, <0 choose y,
Vi1 € Ve Prer < Pit2x,13
else choose y,—1
Vi1 Vil D1 P T 2= 2y, + 5

XX 1

draw (x, X,V 75,)
X Xpr 10 ViiVir;
PiPr+1

if p, <0 choose y,

Vi1V Pre1Prt2x+3
else choose y, —1

Vi1V Prarepr T 2x,— 2, 5

x=0; y=0; r=10 plot (0,10)

p,=1-10=-9 choose)i plot (1,10)

p.=—9+2+3=—4 choose Vi plot (2,10)

p.=—4+4+3=3 choose y,-1 plot (3,9)

p=3+6-18+5=-4 choose y, plot(4,9)

p=—4+8+3=7 choose y,-1 plot (5,8)

p,=7+10—16+5=6 choosey,-1 plot (6,7)

p,=6+12-14+5=9 choosey,-1 plot (7,6)

Ellipse Generation

the tangent y=-x , slope<1.
(0,b) to tangent: increment x find y
tangent to (4,0): decrement y find x

. Similar to circle generation with N =-x
mid-point. Inside test. %\
. . ﬂ
. Different formula for points up to . \\ ;
2

. Mid-point algorithm is applicable X_+Y_:1
to other polynomial equations: a b’

- Parabola, Hyperbola

	OUTPUT PRIMITIVES
	Recap: The basic forward projection pipeline:
	Slide Number 3
	Screen vs. World coordinate systems
	Specification of a 2D WCS in OpenGL
	Output Primitives
	Scan Conversion
	OpenGL Point Functions
	OpenGL Line Functions
	OpenGL Line Functions
	OpenGL Line Functions
	Line Drawing Algorithms
	Digital Differential Analyzer
	DDA
	Bresenham's Line Algorithm
	Slide Number 16
	Bresenham’s Line-Drawing Algorithm
	Example from the textbook
	Example continued...
	Plotted pixels
	Circle Generation
	Circle Drawing in OpenGL
	Circle Generation
	Slide Number 24
	Slide Number 25
	Midpoint Circle Algorithm
	Slide Number 27
	Slide Number 28
	Midpoint Circle Algorithm
	Slide Number 30
	Ellipse Generation

