
Filled Area Primitives

CEng 477
Introduction to Computer Graphics

METU, 2007

Filled Area Primitives

● Two basic approaches to area filling on raster
systems:

– Determine the overlap intervals for scan lines
that cross the area (scan-line)

– Start from an interior position and point
outward from this point until the boundary
condition reached (fill method)

● Scan-line: simple objects, polygons, circles,..

● Fill-method: complex objects, interactive fill.

Polygon Fill Areas

● Most library routines require that a fill area
be specified as a polygon

– OpenGL only allows convex polygons

● Non-polygon (curved) objects can be
approximated by polygons

– Surface tessellation, polygon mesh, triangular
mesh

Polygon types

● Simple polygon:

– all vertices are on the same plane and no
edge crosses, no holes

simple polygon
not a simple polygon

Polygon types

● Simple polygons are either convex or
concave:

– Convex polygon: All interior angles < 180°,
or any line segment combining two points in
the interior is also in the interior

convex polygon concave polygon
can be split into a number of convex polygons

Inside-Outside Tests

● Identifying the interior of a polygon (simple
or complex) is important to identify the
region to be filled

● Odd-even rule: To determine
whether point P is inside or
not. Draw a line starting from
P to a distant position. Count
the number of edges that
crosses this line. If the count
is odd then the point is
inside, otherwise it is outside.

P

Front and Back Face of a Polygon

● The normal vector points in a
direction from the back face
of the polygon to the front
face

● Normal vector is the cross
product of the two edges of
the polygon in counter-
clockwise direction

)(2312 V(V)VVN −×−=

N

V1

V2

V3

OpenGL Polygon Fill-Area Functions

● glRecti(50, 100, 200, 250)

50 100 150 200

100

150

200

250

50

OpenGL primitives

● GL_POLYGON

● GL_TRIANGLES

● GL_TRIANGLE_STRIP

● GL_TRIANGLE_FAN

● GL_QUADS

● GL_QUAD_STRIP

OpenGL primitives

● GL_POLYGON

glBegin (GL_POLYGON);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

p1

p2 p3

p4

p5p6

OpenGL primitives

● GL_TRIANGLES

glBegin (GL_TRIANGLES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

p1

p2 p3

p4

p5p6

OpenGL primitives

● GL_TRIANGLE_STRIP

glBegin (GL_TRIANGLE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p4);

glEnd ();

p1

p2 p3

p4

p5p6

N vertices→N-2 triangles
order of triangles: n, n+1, n+2 (if n is odd)

n+1, n, n+2 (if n is even) (n from 1 to N-2)

OpenGL primitives

● GL_TRIANGLE_FAN

glBegin (GL_TRIANGLE_FAN);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ();

p1

p2 p3

p4

p5p6

N vertices→N-2 triangles
order of triangles: 1, n+1, n+2

(n from 1 to N-2)

OpenGL primitives

● GL_QUADS

glBegin (GL_QUADS);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);
glVertex2iv (p8);

glEnd ();

p1

p2 p3

p4 p5

p6
p7

p8

OpenGL primitives

● GL_QUAD_STRIP

glBegin (GL_QUAD_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p4);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd ();
N vertices→N/2-1 quads
order of quads: 2n-1,2n,2n+2,2n+1

(n from 1 to N/2-1)

OpenGL vertex arrays

● Complex scenes may require many
glVertex() calls

● OpenGL provides vertex arrays to reduce
function calls

● Drawing a cube:

glEnableClientState (GL_VERTEX_ARRAY);
GLint pt[8][3] = {{0,0,0},{0,1,0},{1,0,0},{1,1,0},

{0,0,1},{0,1,1},{1,0,1},{1,1,1}};
glVertexPointer (3, GL_INT, 0, pt);
GLubyte vertIndex[24] ={6,2,3,7,5,1,0,4,7,3,1,5,4,0,2,6,2,0,1,3,7,5,4,6};
glDrawElements (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);

OpenGL Display Lists

● Allows modular description of object
components. Using display lists you can
reference a set of OpenGL drawing commands
multiple times

listID = glGenLists(1); // (number of list numbers to generate)
glNewList (listID, GL_COMPILE_AND_EXECUTE); // or GL_COMPILE
.....
.....
glEndList ();

glCallList(listID);
glDeleteLists(listID,1); // (startID, number of lists)

Fill Algorithms

● General Scan-Line Polygon fill algorithm

– to fill convex and concave polygons

● Boundary-Fill and Flood-Fill algorithms

– to fill arbitrary complex, irregular boundaries

● For now, assume that we fill the interior with
a single color with no fill-pattern applied

● Application of fill-patterns is explained in
sections 4-9 and 4-14 of your textbook

Scan-line Polygon Fill

● For each scan-line:

– Locate the intersection of the
scan-line with the edges (y=ys)

– Sort the intersection points from
left to right.

– Draw the interiors intersection
points pairwise. (a-b), (c-d)

● Problem with corners. Same point
counted twice or not?

a b c d

● a,b,c and d are intersected by 2
line segments each.

● Count b,c twice but a and d once.
Why?

a

b

c

d

a

b

c

d

2

1

2

2

2

2

1

● Solution:
Make a clockwise or counter-
clockwise traversal on edges.
Check if y is monotonically
increasing or decreasing.
If direction changes, double
intersection, otherwise single
intersection.

Scan-line Polygon Filling (coherence)

● Coherence: Properties of one part of a scene are
related with the other in a way that can it be used to
reduce processing of the other.

● Scan-lines adjacent to each other:
The intersection points of edges with adjacent scan-
lines are close to each other (like scan conversion of a
line)

● Intersection points with scan lines:

xk 1 round xk
1
m

xk xk 1

yk 1

yk

● Instead of floating point operations, use integer
operations:

● Example:
m = 8/5

scanline counter x
0 0 0
1 5 0
2 10 (2) 1
3 7 1
4 12 (4) 2
5 9 (1) 3

x
ym

Δ
Δ

= y
xxx kk Δ

Δ
+=+1

counter←0
for each scan-line

counter←counter +Δx
while counter≥Δy

x←x+1
counter←counter –Δy

This algorithm truncates x+1/m. To achieve rounding, we should compare
the counter with Δy/2. Modification of the algorithm left as an exercise.

Efficient Polygon Fill

● Make a (counter) clockwise traversal and shorten the
single intersection edges by one pixel (so that we do
not need to re-consider single/double edges).

● Generate a sorted edge table on the scan-line axis.
Each edge has an entry in smaller y valued corner
point (vertex).

● Each entry keeps a linked list of all connected edges:

– x value of the point

– y value of the end-point

– Slope of the edge

A

B
D

C

E

E'

F

F'

yF' xA 1/mAF' yB xA 1/mAB

yE' xF 1/mFE'

yD xC 1/mCD yB xC 1/mCB

yD xE 1/mED

Scan line 0
1

Sorted edge table

● Start with the smallest scan-line

● Keep an active edge list:

– Update the current x value of the edge based on m
value

– Add the lists in the current table entry based on
their x value

– Remove the completed edges

– Draw the intermediate points of pairwise elements
of the list.

● Example:
A: (30,10),B: (24,32),C: (20,22), D: (16,34)
E: (8,26), F: (12,16)

● Define the polygon with

A,B,C,D,E,F,A

Example

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

A

B

C

D

E

F

● Example:
A: (30,10),B: (24,32),C: (20,22), D: (16,34)
E: (8,26), F: (12,16)

● Define the polygon with

A,B,C,D,E,F,A

● E'=(20,25), F'=(12,15)

Sorted Edge Table:
Y E1 E2
10 [15,30,-3] [32,30,-3/11]
16 [25,12,-2/5]
22 [34,20,-1/3] [32,20,2/5]
26 [34,8,1]

Example

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

A

B

C

D

E

F

● Sorted Edge Table:
Y E1 E2
10 [15,30,-3] [32,30,-3/11]
16 [25,12,-2/5]
22 [34,20,-1/3] [32,20,2/5]
26 [34,8,1]

Y S1 S1 S2 S2
10 30 30
11 27 29.73
12 24 29.45
13 21 29.18
14 18 28.91
15 15 28.64
16 12 28.36
17 11.6 28.09
18 11.2 27.82
19 10.8 27.55
20 10.4 27.27
21 10 27
22 9.6 20 20 26.73
23 9.2 19.67 20.4 26.45
24 8.8 19.33 20.8 26.18
25 8.4 19 21.2 25.91
26 8 18.67 21.6 25.64
27 9 18.33 22 25.36
28 10 18 22.4 25.09
29 11 17.67 22.8 24.82
30 12 17.33 23.2 24.55
31 13 17 23.6 24.27
32 14 16.67 24 24
33 15 16.33
34 16 16

Example

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

A

B

C

D

E

F

Active Edge List

Boundary Fill Algorithm
● Start at a point inside a continuous arbitrary shaped

region and paint the interior outward toward the
boundary. Assumption: boundary color is a single
color

● (x,y): start point; b:boundary color, fill: fill color

void boundaryFill4(x,y,fill,b) {
cur = getpixel(x,y)
if (cur != b) AND (cur != fill) {

setpixel(x,y,fill);
boundaryFill4(x+1,y,fill,b);
boundaryFill4(x-1,y,fill,b);
boundaryFill4(x,y+1,fill,b);
boundaryFill4(x,y-1,fill,b);

}
}

● 4 neighbors vs 8 neighbors: depends on definition of
continuity.
8 neighbor: diagonal boundaries will not stop

● Recursive, so slow. For large regions with millions of
pixels, millions of function calls.

● Stack based improvement: keep neighbors in stack

● Number of elements in the stack can be reduced by
filling the area as pixel spans and pushing only the
pixels with pixel transitions.

● Check the neighbor
pixels as filling the
area line by line

● If pixel changes from
null to boundary or
null when scan-line
finishes, push the
pixel information on
stack.

● After a scan-line
finishes, pop a value
from stack and
continue processing.

11

2

3

1

2
3

4
5

6

7 8
910

1

12

Stack after
scan line

Flood-Fill

● Similar to boundary fill. Can be used for
cases when the boundary is not single-color.
Algorithm continues while the neighbor pixels
have the same color.

● void FloodFill4(x,y,fill,oldcolor) {
cur = getpixel(x,y)
if (cur == oldcolor) {

setpixel(x,y,fill);
FloodFill4(x+1,y,fill,oldcolor);
FloodFill4(x-1,y,fill,oldcolor);
FloodFill4(x,y+1,fill,oldcolor);
FloodFill4(x,y-1,fill,oldcolor);

}
}

Character Generation

● Typesetting fonts:

– Bitmap fonts: simple, not scalable.

– Outline fonts: scalable, flexible,
more complex to process

●
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 1 1 0 1 1 0
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0

Pixelwise on/of
information

Points and
tangents of the
boundary

	Filled Area Primitives
	Filled Area Primitives
	Polygon Fill Areas
	Polygon types
	Polygon types
	Inside-Outside Tests
	Front and Back Face of a Polygon
	OpenGL Polygon Fill-Area Functions
	OpenGL primitives
	OpenGL primitives
	OpenGL primitives
	OpenGL primitives
	OpenGL primitives
	OpenGL primitives
	OpenGL primitives
	OpenGL vertex arrays
	OpenGL Display Lists
	Fill Algorithms
	Scan-line Polygon Fill
	Slide Number 20
	Scan-line Polygon Filling (coherence)
	Slide Number 22
	Efficient Polygon Fill
	Sorted edge table
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Boundary Fill Algorithm
	Slide Number 30
	Slide Number 31
	Flood-Fill
	Character Generation

