Filled Area Primitives

CEng 477 Introduction to Computer Graphics METU, 2007

Filled Area Primitives

- Two basic approaches to area filling on raster systems:
 - Determine the overlap intervals for scan lines that cross the area (scan-line)
 - Start from an interior position and point outward from this point until the boundary condition reached (fill method)
- Scan-line: simple objects, polygons, circles,...
- Fill-method: complex objects, interactive fill.

Polygon Fill Areas

- Most library routines require that a fill area be specified as a polygon
 - OpenGL only allows *convex* polygons
- Non-polygon (curved) objects can be approximated by polygons
 - Surface tessellation, polygon mesh, triangular mesh

Polygon types

- Simple polygon:
 - all vertices are on the same plane and no edge crosses, no holes

simple polygon

not a simple polygon

Polygon types

- Simple polygons are either *convex* or *concave*:
 - Convex polygon: All interior angles < 180°, or any line segment combining two points in the interior is also in the interior

concave polygon can be split into a number of convex polygons

Inside-Outside Tests

- Identifying the interior of a polygon (simple or complex) is important to identify the region to be filled
- Odd-even rule: To determine whether point P is inside or not. Draw a line starting from P to a distant position. Count the number of edges that crosses this line. If the count is odd then the point is inside, otherwise it is outside.

Front and Back Face of a Polygon

- The normal vector points in a direction from the back face of the polygon to the front face
- Normal vector is the cross product of the two edges of the polygon in counterclockwise direction

$$\mathbf{N} = (\mathbf{V}_2 - \mathbf{V}_1) \times (\mathbf{V}_3 - \mathbf{V}_2)$$

OpenGL Polygon Fill-Area Functions

• glRecti(50, 100, 200, 250)

. GL POLYGON

• GL_QUADS

- GL TRIANGLES

- . GL TRIANGLE STRIP

GL_QUAD_STRIP

- . GL TRIANGLE FAN

• GL_POLYGON

glBegin (GL_POLYGON); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p3); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glVertex2iv (p6);

• GL_TRIANGLES

glBegin (GL_TRIANGLES); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p6); glVertex2iv (p3); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5);

p5

p3

p4

• GL_TRIANGLE_STRIP

N vertices \rightarrow N-2 triangles order of triangles: n, n+1, n+2 (if n is odd) n+1, n, n+2 (if n is even) (n from 1 to N-2)

• GL_TRIANGLE_FAN

glBegin (GL_TRIANGLE_FAN); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p3); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glVertex2iv (p6);

N vertices \rightarrow N-2 triangles order of triangles: 1, n+1, n+2 (n from 1 to N-2)

• GL_QUADS

glBegin (GL_QUADS); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p3); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glVertex2iv (p5); glVertex2iv (p6); glVertex2iv (p7); glVertex2iv (p8);

р8

p7

р5

рб

GL_QUAD_STRIP

glBegin (GL QUAD STRIP); p1 glVertex2iv (p1); p4 glVertex2iv (p2); glVertex2iv (p4); glVertex2iv (p3); glVertex2iv (p5); glVertex2iv (p6); р3 glVertex2iv (p8); p2 glVertex2iv (p7); glEnd (); N vertices \rightarrow N/2-1 quads order of quads: 2n-1,2n,2n+2,2n+1 (n from 1 to N/2-1)

OpenGL vertex arrays

- Complex scenes may require many glVertex() calls
- OpenGL provides vertex arrays to reduce function calls
- Drawing a cube:

glEnableClientState (GL_VERTEX_ARRAY); GLint pt[8][3] = {{0,0,0}, {0,1,0}, {1,0,0}, {1,1,0}, {0,0,1}, {0,1,1}, {1,0,1}, {1,1,1}}; glVertexPointer (3, GL_INT, 0, pt); GLubyte vertIndex[24] ={6,2,3,7,5,1,0,4,7,3,1,5,4,0,2,6,2,0,1,3,7,5,4,6}; glDrawElements (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);

OpenGL Display Lists

 Allows modular description of object components. Using display lists you can reference a set of OpenGL drawing commands multiple times

listID = glGenLists(1); // (number of list numbers to generate)
glNewList (listID, GL_COMPILE_AND_EXECUTE); // or GL_COMPILE

```
.....
glEndList ( );
```

```
glCallList(listID);
glDeleteLists(listID,1); // (startID, number of lists)
```

Fill Algorithms

- General Scan-Line Polygon fill algorithm
 - to fill convex and concave polygons
- Boundary-Fill and Flood-Fill algorithms

- to fill arbitrary complex, irregular boundaries

- For now, assume that we fill the interior with a *single* color with no fill-pattern applied
- Application of fill-patterns is explained in sections 4-9 and 4-14 of your textbook

Scan-line Polygon Fill

- For each scan-line:
 - Locate the intersection of the scan-line with the edges $(y=y_s)$
 - Sort the intersection points from left to right.
 - Draw the interiors intersection points pairwise. (a-b), (c-d)
- Problem with corners. Same point counted twice or not?

	\frown
a b	c d

- *a*, *b*, *c* and *d* are intersected by 2 line segments each.
- Count b, c twice but a and d once.
 Why?
- Solution:

Make a clockwise or counterclockwise traversal on edges. Check if y is monotonically increasing or decreasing. If direction changes, double intersection, otherwise single intersection.

Scan-line Polygon Filling (coherence)

- Coherence: Properties of one part of a scene are related with the other in a way that can it be used to reduce processing of the other.
- Scan-lines adjacent to each other: The intersection points of edges with adjacent scanlines are close to each other (like scan conversion of a line)

 ${\mathcal X}_k$

 X_{k+1}

 y_k

. Intersection points with scan lines:

$$x_{k+1} = round\left(x_k + \frac{1}{m}\right)$$

Instead of floating point operations, use integer operations:

$m = \frac{\Delta y}{\Delta x}$ $x_{k+1} = x_k + \frac{\Delta x}{\Delta y}$	• <u>Example</u> : m = 8/5		
	<u>scanline</u>	counter	<u>X</u>
<i>counter</i> ←0	0	0	0
for each scan-line	1	5	0
$counter \leftarrow counter + \Lambda r$	2	10 (2)	1
$\frac{\partial \partial u}{\partial t} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial t}$	3	7	1
while <i>counter</i> $\geq \Delta y$	4	12 (4)	2
$x \leftarrow x + 1$	5	9 (1)	3
$counter \leftarrow counter - \Delta y$			

This algorithm truncates x+1/m. To achieve rounding, we should compare the counter with $\Delta y/2$. Modification of the algorithm left as an exercise.

Efficient Polygon Fill

- Make a (counter) clockwise traversal and shorten the single intersection edges by one pixel (so that we do not need to re-consider single/double edges).
- Generate a sorted edge table on the scan-line axis.
 Each edge has an entry in smaller y valued corner point (vertex).
- Each entry keeps a linked list of all connected edges:
 - x value of the point
 - *y* value of the end-point
 - Slope of the edge

Sorted edge table

- Start with the smallest scan-line
- . Keep an active edge list:
 - Update the current x value of the edge based on m value
 - Add the lists in the current table entry based on their x value
 - Remove the completed edges
 - Draw the intermediate points of pairwise elements of the list.

Example

- Example:
 A: (30,10),B: (24,32),C: (20,22), D: (16,34)
 E: (8,26), F: (12,16)
- Define the polygon with A,B,C,D,E,F,A

Example

- Example: A: (30,10),B: (24,32),C: (20,22), D: (16,34) E: (8,26), F: (12,16)
- Define the polygon with

A, B, C, D, E, F, A

• E' = (20, 25), F' = (12, 15)

схатре			Y	S1	S1	S2 3	52	
	-			10	30	30		
				⁻ 11	27	29.73		
 Sort 	ed Edge Table:			12	24	29.45		
Y	E1 E	2		13	21	29.18		
10	[15 30 -3]			14	18	28.91		
17				15	15	28.64		
10	[25, 12, -2/5]			16	12	28.36		
22	[34,20,-1/3] [[32,20,2/5]		17	11.6	28.09		
26	[34 8 1]			18	11.2	27.82		
20				19	10.8	27.55		
40				20	10.4	27.27		
				21	10	27		
35	. - D			22	9.6	20	20	26.73
30				23	9.2	19.67	20.4	26.45
	F			24	8.8	19.33	20.8	26.18
25				25	8.4	19	21.2	25.91
				26	8	18.67	21.6	25.64
		-c		27	9	18.33	22	25.36
15				28	10	18	22.4	25.09
				29	11	17.67	22.8	24.82
10				30	12	17.33	23.2	24.55
5			A	31	13	17	23.6	24.27
				32	14	16.67	24	24
0				33	15	16.33		
0	5 10 15	20 25 30	35	34	16	16		

Evampla

Active Edge List

Boundary Fill Algorithm

- Start at a point inside a continuous arbitrary shaped region and paint the interior outward toward the boundary. Assumption: boundary color is a single color
- (x, y): start point; b: boundary color, fill: fill color

```
void boundaryFill4(x,y,fill,b) {
  cur = getpixel(x,y)
  if (cur != b) AND (cur != fill) {
    setpixel(x,y,fill);
    boundaryFill4(x+1,y,fill,b);
    boundaryFill4(x-1,y,fill,b);
    boundaryFill4(x,y+1,fill,b);
    boundaryFill4(x,y-1,fill,b);
}
```

- 4 neighbors vs 8 neighbors: depends on definition of continuity.
 8 neighbor: diagonal boundaries will not stop
- Recursive, so slow. For large regions with millions of pixels, millions of function calls.
- Stack based improvement: keep neighbors in stack
- Number of elements in the stack can be reduced by filling the area as pixel spans and pushing only the pixels with pixel transitions.

- Check the neighbor pixels as filling the area line by line
- If pixel changes from null to boundary or null when scan-line finishes, push the pixel information on stack.
- After a scan-line finishes, pop a value from stack and continue processing.

Flood-Fill

 Similar to boundary fill. Can be used for cases when the boundary is not single-color.
 Algorithm continues while the neighbor pixels have the same color.

```
• void FloodFill4(x,y,fill,oldcolor) {
    cur = getpixel(x,y)
    if (cur == oldcolor) {
        setpixel(x,y,fill);
        FloodFill4(x+1,y,fill,oldcolor);
        FloodFill4(x-1,y,fill,oldcolor);
        FloodFill4(x,y+1,fill,oldcolor);
        FloodFill4(x,y-1,fill,oldcolor);
    }
}
```

Character Generation

- Typesetting fonts:
 - Bitmap fonts: simple, not scalable.
 - Outline fonts: scalable, flexible, more complex to process

