Filled Area Primitives

CEng 477
Introduction to Computer Graphics
METU, 2007

Filled Area Primitives

- Two basic approaches to area filling on raster systems:
- Determine the overlap intervals for scan lines that cross the area (scan-line)
- Start from an interior position and point outward from this point until the boundary condition reached (fill method)
- Scan-line: simple objects, polygons, circles,..
. Fill-method: complex objects, interactive fill.

Polygon Fill Areas

- Most library routines require that a fill area be specified as a polygon
- OpenGL only allows convex polygons
- Non-polygon (curved) objects can be approximated by polygons
- Surface tessellation, polygon mesh, triangular mesh

Polygon types

- Simple polygon:
- all vertices are on the same plane and no edge crosses, no holes

simple polygon

not a simple polygon

Polygon types

- Simple polygons are either convex or concave:
- Convex polygon: All interior angles < 180°, or any line segment combining two points in the interior is also in the interior

convex polygon

concave polygon

Inside-Outside Tests

- Identifying the interior of a polygon (simple or complex) is important to identify the region to be filled
. Odd-even rule: To determine whether point \mathbf{P} is inside or not. Draw a line starting from P to a distant position. Count the number of edges that crosses this line. If the count is odd then the point is inside, otherwise it is outside.

Odd-Even Rule

Front and Back Face of a Polygon

- The normal vector points in a direction from the back face of the polygon to the front face
- Normal vector is the cross product of the two edges of the polygon in counter-
 clockwise direction

$$
\mathbf{N}=\left(\mathbf{V}_{2}-\mathbf{V}_{1}\right) \times\left(\mathbf{V}_{3}-\mathbf{V}_{2}\right)
$$

OpenGL Polygon Fill-Area Functions

- gIRecti(50, 100, 200, 250)

OpenGL primitives

- GL_POLYGON
- GL_TRIANGLES
- GL_TRIANGLE_STRIP
- GL_TRIANGLE_FAN
- GL_QUADS
- GL_QUAD_STRIP

OpenGL primitives

- GL_POLYGON
glBegin (GL_POLYGON);
glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glVertex2iv (p6);
 glEnd ();

OpenGL primitives

. GL_TRIANGLES
glBegin (GL_TRIANGLES);
glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p6); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5);

glEnd ();

OpenGL primitives

- GL_TRIANGLE_STRIP
glBegin (GL_TRIANGLE_STRIP); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p6); glVertex2iv (p3); glVertex2iv (p5); glVertex2iv (p4);
 glEnd ();

N vertices $\rightarrow \mathrm{N}-2$ triangles order of triangles: $\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$ (if n is odd)

$$
\mathrm{n}+1, \mathrm{n}, \mathrm{n}+2 \text { (if } \mathrm{n} \text { is even) (} \mathrm{n} \text { from } 1 \text { to } \mathrm{N}-2 \text {) }
$$

OpenGL primitives

. GL_TRIANGLE_FAN
glBegin (GL_TRIANGLE_FAN); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glVertex2iv (p6);
 glEnd ();

N vertices $\rightarrow \mathrm{N}-2$ triangles order of triangles: $1, \mathrm{n}+1, \mathrm{n}+2$
(n from 1 to $\mathrm{N}-2$)

OpenGL primitives

- GL_QUADS

glEnd ();

OpenGL primitives

. GL_QUAD_STRIP
glBegin (GL_QUAD STRIP); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p4); glVertex2iv (p3); glVertex2iv (p5); glVertex2iv (p6); glVertex2iv (p8);
 glVertex2iv (p7);
glEnd ();
N vertices $\rightarrow \mathrm{N} / 2-1$ quads order of quads: $2 \mathrm{n}-1,2 \mathrm{n}, 2 \mathrm{n}+2,2 \mathrm{n}+1$
(n from 1 to $\mathrm{N} / 2-1$)

OpenGL vertex arrays

- Complex scenes may require many glVertex() calls
- OpenGL provides vertex arrays to reduce function calls
- Drawing a cube:
gIEnableClientState (GL_VERTEX_ARRAY);
GLint pt[8][3] $=\{\{0,0,0\},\{0,1,0\},\{1,0,0\},\{1,1,0\}$, $\{0,0,1\},\{0,1,1\},\{1,0,1\},\{1,1,1\}\} ;$
glVertexPointer (3, GL_INT, 0, pt);
GLubyte vertIndex[24] =\{6,2,3,7,5,1,0,4,7,3,1,5,4,0,2,6,2,0,1,3,7,5,4,6\}; gIDrawElements (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);

OpenGL Display Lists

- Allows modular description of object components. Using display lists you can reference a set of OpenGL drawing commands multiple times
listID = glGenLists(1); // (number of list numbers to generate)
glNewList (listID, GL_COMPILE_AND_EXECUTE); // or GL_COMPILE
.....
glEndList ();
glCallList(listID);
glDeleteLists(listID,1); // (startID, number of lists)

Fill Algorithms

- General Scan-Line Polygon fill algorithm
- to fill convex and concave polygons
- Boundary-Fill and Flood-Fill algorithms
- to fill arbitrary complex, irregular boundaries
- For now, assume that we fill the interior with a single color with no fill-pattern applied
- Application of fill-patterns is explained in sections 4-9 and 4-14 of your textbook

Scan-line Polygon Fill

- For each scan-line:
- Locate the intersection of the scan-line with the edges $\left(y=y_{s}\right)$
- Sort the intersection points from left to right.
- Draw the interiors intersection points pairwise. (a-b), (c-d)
- Problem with corners. Same point counted twice or not?
- a,b,c and d are intersected by 2 line segments each.
- Count b,c twice but a and d once. Why?
- Solution:

Make a clockwise or counterclockwise traversal on edges. Check if y is monotonically increasing or decreasing. If direction changes, double intersection, otherwise single intersection.

Scan-line Polygon Filling (coherence)

- Coherence: Properties of one part of a scene are related with the other in a way that can it be used to reduce processing of the other.
- Scan-lines adjacent to each other:

The intersection points of edges with adjacent scanlines are close to each other (like scan conversion of a line)

- Intersection points with scan lines:

- Instead of floating point operations, use integer operations:

$$
m=\frac{\Delta y}{\Delta x} \quad x_{k+1}=x_{k}+\frac{\Delta x}{\Delta y} \quad-\frac{\text { Example: }}{\mathrm{m}=8 / 5}
$$

counter $\leftarrow 0$
for each scan-line
\quad counter \leftarrow counter $+\Delta x$
while counter $\geq \Delta y$
$\quad x \leftarrow x+1$
\quad counter \leftarrow counter $-\Delta y$

scanline	counter	x
0	0	0
1	5	0
2	10	(2)
3	7	1
4	12	(4)
5	9	(1)
		2

This algorithm truncates $x+1 / m$. To achieve rounding, we should compare the counter with $\Delta y / 2$. Modification of the algorithm left as an exercise.

Efficient Polygon Fill

- Make a (counter) clockwise traversal and shorten the single intersection edges by one pixel (so that we do not need to re-consider single/double edges).
- Generate a sorted edge table on the scan-line axis. Each edge has an entry in smaller y valued corner point (vertex).
- Each entry keeps a linked list of all connected edges:
- x value of the point
- y value of the end-point
- Slope of the edge

Sorted edge table

- Start with the smallest scan-line
- Keep an active edge list:
- Update the current x value of the edge based on m value
- Add the lists in the current table entry based on their x value
- Remove the completed edges
- Draw the intermediate points of pairwise elements of the list.

Example

- Example:

A: $(30,10), B:(24,32), C:(20,22), D:(16,34)$
E: $(8,26), F:(12,16)$

- Define the polygon with A,B,C,D,E,F,A

Example

- Example:

A: $(30,10), B:(24,32), C:(20,22), D:(16,34)$
E: $(8,26), F:(12,16)$

- Define the polygon with
A,B,C,D,E,F,A
- $E^{\prime}=(20,25), \mathrm{F}^{\prime}=(12,15)$

Sorted Edge Table:

Y	$E 1$	$E 2$
10	$[15,30,-3]$	$[32,30,-3 / 11]$
16	$[25,12,-2 / 5]$	
22	$[34,20,-1 / 3]$	$[32,20,2 / 5]$
26	$[34,8,1]$	

Active Edge List

Y S1	S S		S 2	S 2
10	30	30		
11	27	29.73		
12	24	29.45		
13	21	29.18		
14	18	28.91		
15	15	28.64		
16	12	28.36		
17	11.6	28.09		
18	11.2	27.82		
19	10.8	27.55		
20	10.4	27.27		
21	10	27		
22	9.6	20	20	26.73
23	9.2	19.67	20.4	26.45
24	8.8	19.33	20.8	26.18
25	8.4	19	21.2	25.91
26	8	18.67	21.6	25.64
27	9	18.33	22	25.36
28	10	18	22.4	25.09
29	11	17.67	22.8	24.82
30	12	17.33	23.2	24.55
31	13	17	23.6	24.27
32	14	16.67	24	24
33	15	16.33		
34	16	16		

Boundary Fill Algorithm

- Start at a point inside a continuous arbitrary shaped region and paint the interior outward toward the boundary. Assumption: boundary color is a single color
- (x, y) : start point; b:boundary color, fill: fill color

```
void boundaryFill4(x,y,fill,b) {
    cur = getpixel(x,y)
    if (cur != b) AND (cur != fill) {
        setpixel(x,y,fill);
        boundaryFill4(x+1,y,fill,b);
        boundaryFill4(x-1,y,fill,b);
        boundaryFill4(x,y+1,fill,b);
        boundaryFill4(x,y-1,fill,b);
    }
}
```

. 4 neighbors vs 8 neighbors: depends on definition of continuity. 8 neighbor: diagonal boundaries will not stop

- Recursive, so slow. For large regions with millions of pixels, millions of function calls.
- Stack based improvement: keep neighbors in stack
- Number of elements in the stack can be reduced by filling the area as pixel spans and pushing only the pixels with pixel transitions.
- Check the neighbor pixels as filling the area line by line
- If pixel changes from null to boundary or null when scan-line finishes, push the pixel information on stack.
- After a scan-line
 finishes, pop a value from stack and continue processing.

Flood-Fill

- Similar to boundary fill. Can be used for cases when the boundary is not single-color. Algorithm continues while the neighbor pixels have the same color.
- void FloodFill4(x,y,fill,oldcolor) \{

```
    cur = getpixel(x,y)
```

 if (cur == oldcolor) \{
 setpixel(x,y,fill);
 FloodFill4(x+1,y,fill,oldcolor);
 FloodFill4(x-1,y,fill,oldcolor);
 FloodFill4(x,y+1, fill, oldcolor);
 FloodFill4(x,y-1,fill,oldcolor);
 \}
 \}

Character Generation

- Typesetting fonts:
- Bitmap fonts: simple, not scalable.
- Outline fonts: scalable, flexible, more complex to process

```
0}0000000000000 Pixelwise on/ of
0}00
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0
```


