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Filled Area Primitives

●  Two basic approaches to area filling on raster 
systems:

–  Determine the overlap intervals for scan lines 
that cross the area (scan-line)

–  Start from an interior position and point 
outward from this point until the boundary 
condition reached (fill method)

●  Scan-line: simple objects, polygons, circles,..

●  Fill-method: complex objects, interactive fill.



Polygon Fill Areas

●  Most library routines require that a fill area 
be specified as a polygon

–  OpenGL only allows convex polygons

●  Non-polygon (curved) objects can be 
approximated by polygons

–  Surface tessellation, polygon mesh, triangular 
mesh



Polygon types

●  Simple polygon:

–  all vertices are on the same plane and no 
edge crosses, no holes

simple polygon
not a simple polygon



Polygon types

●  Simple polygons are either convex or 
concave:

–  Convex polygon: All interior angles < 180°, 
or any line segment combining two points in 
the interior is also in the interior

convex polygon concave polygon
can be split into a number of convex polygons



Inside-Outside Tests

●  Identifying the interior of a polygon (simple 
or complex) is important to identify the 
region to be filled

●  Odd-even rule: To determine 
whether point P is inside or 
not. Draw a line starting from 
P to a distant position. Count 
the number of edges that 
crosses this line. If the count 
is odd then the point is 
inside, otherwise it is outside.

P



Front and Back Face of a Polygon

●  The normal vector points in a 
direction from the back face 
of the polygon to the front 
face

●  Normal vector is the cross 
product of the two edges of 
the polygon in counter- 
clockwise direction
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OpenGL Polygon Fill-Area Functions

●  glRecti(50, 100, 200, 250)
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OpenGL primitives

●  GL_POLYGON

●  GL_TRIANGLES

●  GL_TRIANGLE_STRIP

●  GL_TRIANGLE_FAN

●  GL_QUADS

●  GL_QUAD_STRIP



OpenGL primitives

●  GL_POLYGON

glBegin (GL_POLYGON);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ( );

p1

p2 p3

p4

p5p6



OpenGL primitives

●  GL_TRIANGLES

glBegin (GL_TRIANGLES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ( );
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OpenGL primitives

●  GL_TRIANGLE_STRIP

glBegin (GL_TRIANGLE_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p6);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p4);

glEnd ( );

p1

p2 p3

p4

p5p6

N vertices→N-2 triangles
order of triangles: n, n+1, n+2  (if n is odd)

n+1, n, n+2 (if n is even)   (n from 1 to N-2)



OpenGL primitives

●  GL_TRIANGLE_FAN

glBegin (GL_TRIANGLE_FAN);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);

glEnd ( );

p1
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p5p6

N vertices→N-2 triangles
order of triangles: 1, n+1, n+2  

(n from 1 to N-2)



OpenGL primitives

●  GL_QUADS

glBegin (GL_QUADS);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);
glVertex2iv (p8);

glEnd ( );
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OpenGL primitives

●  GL_QUAD_STRIP

glBegin  (GL_QUAD_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p4);
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd  ( );
N vertices→N/2-1 quads
order of quads: 2n-1,2n,2n+2,2n+1  

(n from 1 to N/2-1)



OpenGL vertex arrays

●  Complex scenes may require many 
glVertex() calls

●  OpenGL provides vertex arrays to reduce 
function calls

●  Drawing a cube:

glEnableClientState  (GL_VERTEX_ARRAY);
GLint  pt[8][3] = {{0,0,0},{0,1,0},{1,0,0},{1,1,0},

{0,0,1},{0,1,1},{1,0,1},{1,1,1}};
glVertexPointer  (3, GL_INT, 0, pt);
GLubyte  vertIndex[24] ={6,2,3,7,5,1,0,4,7,3,1,5,4,0,2,6,2,0,1,3,7,5,4,6}; 
glDrawElements  (GL_QUADS, 24, GL_UNSIGNED_BYTE, vertIndex);



OpenGL Display Lists

●  Allows modular description of object 
components. Using display lists you can 
reference a set of OpenGL drawing commands 
multiple times

listID  = glGenLists(1); // (number of list numbers to generate) 
glNewList  (listID, GL_COMPILE_AND_EXECUTE); // or GL_COMPILE
.....
.....
glEndList  ( );

glCallList(listID);
glDeleteLists(listID,1); // (startID, number of lists)



Fill Algorithms

●  General Scan-Line Polygon fill algorithm

–  to fill convex and concave polygons

●  Boundary-Fill and Flood-Fill algorithms

–  to fill arbitrary complex, irregular boundaries

●  For now, assume that we fill the interior with 
a single color with no fill-pattern applied

●  Application of fill-patterns is explained in 
sections 4-9 and 4-14 of your textbook



Scan-line Polygon Fill

●  For each scan-line:

–  Locate the intersection of the 
scan-line with the edges (y=ys )

–  Sort the intersection points from 
left to right.

–  Draw the interiors intersection 
points pairwise. (a-b), (c-d)

●  Problem with corners. Same point 
counted twice or not?

a b c d



●  a,b,c and d are intersected by 2 
line segments each.

●  Count b,c twice but a and d once. 
Why?
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●  Solution: 
Make a clockwise or counter- 
clockwise traversal on edges. 
Check if y is monotonically 
increasing or decreasing. 
If direction changes, double 
intersection, otherwise single 
intersection.



Scan-line Polygon Filling (coherence)

●  Coherence: Properties of one part of a scene are 
related with the other in a way that can it be used to 
reduce processing of the other.

●  Scan-lines adjacent to each other: 
The intersection points of edges with adjacent scan- 
lines are close to each other (like scan conversion of a 
line)

●  Intersection points with scan lines:

xk 1 round xk
1
m

xk xk 1

yk 1

yk



●  Instead of floating point operations, use integer 
operations:

●  Example: 
m = 8/5 

scanline    counter           x      
0            0                0 
1 5 0  
2           10  (2)         1 
3 7  1  
4 12  (4)         2 
5 9   (1)         3

x
ym

Δ
Δ

= y
xxx kk Δ

Δ
+=+1

counter←0
for each scan-line

counter←counter +Δx
while counter≥Δy

x←x+1
counter←counter –Δy

This algorithm truncates x+1/m. To achieve rounding, we should compare
the counter with Δy/2. Modification of the algorithm left as an exercise.



Efficient Polygon Fill

●  Make a (counter) clockwise traversal and shorten the 
single intersection edges by one pixel (so that we do 
not need to re-consider single/double edges).

●  Generate a sorted edge table on the scan-line axis. 
Each edge has an entry in smaller y valued corner 
point (vertex).

●  Each entry keeps a linked list of all connected edges:

–  x value of the point

–  y value of the end-point

–  Slope of the edge



A

B
D

C

E

E'

F

F'

yF' xA 1/mAF' yB xA 1/mAB

yE' xF 1/mFE'

yD xC 1/mCD yB xC 1/mCB

yD xE 1/mED

Scan line 0
1

Sorted edge table



●  Start with the smallest scan-line

●  Keep an active edge list:

–  Update the current x value of the edge based on m 
value

–  Add the lists in the current table entry based on 
their x value

–  Remove the completed edges

–  Draw the intermediate points of pairwise elements 
of the list.



●  Example: 
A: (30,10),B: (24,32),C: (20,22), D: (16,34) 
E: (8,26), F: (12,16)

●  Define the polygon with 

A,B,C,D,E,F,A 

Example
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●  Example: 
A: (30,10),B: (24,32),C: (20,22), D: (16,34) 
E: (8,26), F: (12,16)

●  Define the polygon with 

A,B,C,D,E,F,A 

●  E'=(20,25), F'=(12,15) 

Sorted Edge Table: 
Y     E1        E2           
10   [15,30,-3] [32,30,-3/11] 
16   [25,12,-2/5] 
22   [34,20,-1/3] [32,20,2/5] 
26   [34,8,1]
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●  Sorted Edge Table: 
Y     E1        E2           
10   [15,30,-3] [32,30,-3/11] 
16   [25,12,-2/5] 
22   [34,20,-1/3] [32,20,2/5] 
26   [34,8,1]

Y S1 S1 S2 S2
10 30 30
11 27 29.73
12 24 29.45
13 21 29.18
14 18 28.91
15 15 28.64
16 12 28.36
17 11.6 28.09
18 11.2 27.82
19 10.8 27.55
20 10.4 27.27
21 10 27
22 9.6 20 20 26.73
23 9.2 19.67 20.4 26.45
24 8.8 19.33 20.8 26.18
25 8.4 19 21.2 25.91
26 8 18.67 21.6 25.64
27 9 18.33 22 25.36
28 10 18 22.4 25.09
29 11 17.67 22.8 24.82
30 12 17.33 23.2 24.55
31 13 17 23.6 24.27
32 14 16.67 24 24
33 15 16.33
34 16 16
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Boundary Fill Algorithm
●  Start at a point inside a continuous arbitrary shaped 

region and paint the interior outward toward the 
boundary. Assumption: boundary color is a single 
color

●  (x,y): start point; b:boundary color, fill: fill color 

void boundaryFill4(x,y,fill,b) { 
cur = getpixel(x,y) 
if (cur != b) AND (cur != fill) { 

setpixel(x,y,fill); 
boundaryFill4(x+1,y,fill,b); 
boundaryFill4(x-1,y,fill,b); 
boundaryFill4(x,y+1,fill,b); 
boundaryFill4(x,y-1,fill,b); 

} 
}



●  4 neighbors vs 8 neighbors: depends on definition of 
continuity. 
8 neighbor: diagonal boundaries will not stop

●  Recursive, so slow. For large regions with millions of 
pixels, millions of function calls.

●  Stack based improvement: keep neighbors in stack

●  Number of elements in the stack can be reduced by 
filling the area as pixel spans and pushing only the 
pixels with pixel transitions.



●  Check the neighbor 
pixels as filling the 
area line by line

●  If pixel changes from 
null to boundary or 
null when scan-line 
finishes, push the 
pixel  information on 
stack.

●  After a scan-line 
finishes, pop a value 
from stack and 
continue processing. 
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Flood-Fill

●  Similar to boundary fill. Can be used for 
cases when the boundary is not single-color. 
Algorithm continues while the neighbor pixels 
have the same color.

●  void FloodFill4(x,y,fill,oldcolor) { 
cur = getpixel(x,y) 
if (cur == oldcolor) { 

setpixel(x,y,fill); 
FloodFill4(x+1,y,fill,oldcolor); 
FloodFill4(x-1,y,fill,oldcolor); 
FloodFill4(x,y+1,fill,oldcolor); 
FloodFill4(x,y-1,fill,oldcolor); 

} 
}



Character Generation

●  Typesetting fonts:

–  Bitmap fonts: simple, not scalable.

–  Outline fonts: scalable, flexible, 
more complex to process

●  
0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 
0 0 1 1 0 1 1 0 
0 1 1 0 0 0 1 1 
0 1 1 0 0 0 1 1 
0 1 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 
0 1 1 0 0 0 1 1 
0 1 1 0 0 0 1 1 
0 1 1 0 0 0 1 1 
0 1 1 0 0 0 1 1 
0 0 0 0 0 0 0 0

Pixelwise on/of 
information

Points and 
tangents of the 
boundary
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