## Problems in Geometry (1)

1. Let $A B C$ be a triangle with orthocenter $H$ and let $A H, B H, C H$ meet $B C, C A, A B$ in $\widetilde{A}, \widetilde{B}, \widetilde{C}$, respectively.
(A) Prove that $H A \cdot H \widetilde{A}=H B \cdot H \widetilde{B}=H C \cdot H \widetilde{C} \cdot{ }^{1}$
(B ) If $A B C$ is an acute angled triangle, prove that $H$ is the incenter of $\widetilde{A} \widetilde{B} \widetilde{C} \cdot{ }^{2}$
(C) What happens if $A$ is an obtuse angle ?
2. Let $A B C$ be a triangle with incenter $I$ and excenters $I_{a}, I_{b}, I_{c}$.
(A) Prove that $I$ is the orthocenter of the triangle $I_{a} I_{b} I_{c}$.
(B) Prove that the circumcircle of a triangle passes through the midpoint of a line segment joining any two of the excenters.
(C) Prove that the circumcircle of a triangle passes through the midpoint of a line segment joining the incenter with any one of the excenters.
3. In a triangle $A B C$ with centroid $G$, let $A G, B G, C G$ meet $B C, C A, A B$ in $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Let the parallel to $A B$ through $C$ intersect $B^{\prime} C^{\prime}$ in $K$. Prove that
(A) $A K$ is parallel to $C C^{\prime}$ and $|A K|=\left|C C^{\prime}\right|, \quad\left|A^{\prime} K\right|=\left|B B^{\prime}\right|$.
(B) Prove that the the line $C A$ is the median of the triangle $A A^{\prime} K$ through the point A.
(C) Prove that the length of the median of the triangle $A A^{\prime} K$ through the point $A$ is $3 b / 4$.
4. In a triangle $A B C$, let $m_{a}, m_{b}, m_{c}$ denote the lengths of the medians through $A, B, C$ respectively.
(A) Prove that $2 m_{a} \leq b+c .{ }^{3}$
(B) Prove that $m_{a}+m_{b}+m_{c} \leq a+b+c$.
(C) Prove that

$$
\frac{3}{4}(a+b+c) \leq m_{a}+m_{b}+m_{c} .
$$

Can any of these inequalities degenerate into an equality? ${ }^{4}$

[^0]5. Let $A B C$ be a triangle with orthocenter $H$ and centroid $G$. Let $M_{a}, M_{b}, M_{c}$ be the centroids of $H B C, H C A, H A B$ respectively.
(A) Prove that $M_{b} M_{c}$ is parallel to $B C$.
(B) Prove that $G$ is the orthocenter of the triangle $M_{a} M_{b} M_{c}$.
6. In a triangle $A B C$, let $k, l, m$ be the perpendicular bisectors of $[B, C],[C, A],[A, B]$. Given $X_{n}$ for each $n \in \mathbb{Z}$ with $X_{3 n} \in k, X_{3 n+1} \in l, X_{3 n+2} \in m$ such that $A \in X_{3 n+1} X_{3 n+2}$, $B \in X_{3 n+2} X_{3 n+3}, C \in X_{3 n} X_{3 n+1}$, prove that $X_{n}=X_{n+6}$ for all $n \in \mathbb{Z}$.
7. Consider a triangle $A B C$ with incenter $I$. Given $X_{n}$ for each $n \in \mathbb{Z}$ with $X_{3 n} \in$ $B C, X_{3 n+1} \in C A, X_{3 n+2} \in A B$ such that $I C \perp X_{3 n} X_{3 n+1}, I A \perp X_{3 n+1} X_{3 n+2}, I B \perp$ $X_{3 n+2} X_{3 n+3}$ for all $n \in \mathbb{Z}$, prove that $X_{n}=X_{n+6}$ for all $n \in \mathbb{Z}$.
8. Let $A B C$ be a triangle with orthocenter $H$ and let $A H, B H, C H$ meet $B C, C A, A B$ in $\widetilde{A}, \widetilde{B}, \widetilde{C}$, respectively. Let the feet of perpendiculars from $\widetilde{A}$ on $C A$ and $A B$ be $X$ and $X^{\prime}$ respectively. Similarly let the feet of the perpendiculars from $\widetilde{B}$ on $A B$ and $B C$ be $Y$ and $Y^{\prime}$, of $\widetilde{C}$ on $B C$ and $C A$ be $Z$ and $Z^{\prime}$ respectively.
(A) Prove that $Y Z^{\prime}$ is parallel to $B C$. What can you say about $Z X^{\prime}$ and $X Y^{\prime}$ ?
(B) Prove that $X, X^{\prime}, B, C$ are concyclic. What can you say about $Y, Y^{\prime}, C, A$ and $Z, Z^{\prime}, A, B$ ?
(C) Prove that $\left|X X^{\prime}\right|=\left|Y Y^{\prime}\right|=\left|Z Z^{\prime}\right|$.
(D) Prove that $X, Y, Z, X^{\prime}, Y^{\prime}, Z^{\prime}$ are concyclic. ${ }^{7}$

[^1]
[^0]:    ${ }^{1}$ Note that the triangles $H \widetilde{A} C$ and $H \widetilde{C} A$ are similar.
    ${ }^{2}$ Note that $\widetilde{A}, H, \widetilde{B}, C$ are concyclic and hence $<\widetilde{B} \widetilde{A} H=<\widetilde{B} C H=90-A$.
    ${ }^{3}$ Let $A^{\prime}$ be the midpoint of $[B, C]$. Let the point $T$ be chosen on $A A^{\prime}$ such that $A^{\prime}$ is also the midpoint of $[A, T]$. Consider the paralelogram $A B T C$ and the triangle $A T C$.
    ${ }^{4}$ Remember the triangle $A A^{\prime} K$ in Problem 3. Its sidelengths are $m_{a}, m_{b}, m_{c}$. What are the lengths of the medians of $A A^{\prime} K$ ? .

[^1]:    ${ }^{5}$ Remember that in the triangle $H B C$ the point $M_{b}$ divides $\left[H A^{\prime}\right]$ in the ratio $-1: 2$. Similar observations in $A B C, H C A, H A B$.
    ${ }^{6}$ Start with $X_{0} \in k$ and construct $X_{1} \in l, X_{2} \in m$ and so on. Let $\alpha=<X_{0} C B$. Compute the values of $<X_{1} A C,<X_{2} B A,<X_{3} C B,<X_{4} A C,<X_{5} B A$. What do you notice ?
    ${ }^{7}$ The circle containing the points $X, Y, Z, X^{\prime}, Y^{\prime}, Z^{\prime}$ is referred to as the Taylor Circle and its discovery is attributed to H. M. Taylor (1842-1927) about whom I could find no information.

