Problems in Geometry (2)

1. Given a rectangle ABCD prove that $|PA|^2 + |PC|^2 = |PB|^2 + |PD|^2$ for any point P.

2. Given an acute angled positively oriented triangle ABC, let O and H be the circumcenter and the orthocenter of ABC, respectively. Let AH intersect BC in \tilde{A} .

- (A) Prove that $|AH| = 2R \cos A$.¹
- (B) Prove that $|\tilde{A}H| = 2R \cos B \cos C$.²
- (C) Prove that OH is perpendicular to AH iff $\tan B \tan C = 3$.³

3. Let P be a point on the circumcircle of a triangle ABC such that AP is the internal bisector of the angle A. Prove that the following conditions are equivalent ⁴ ⁵

(i)
$$|PA| = 2|PB|$$
, (ii) $2\sin\left(\frac{A}{2}\right) = \cos\left(\frac{B-C}{2}\right)$, (iii) $2a = b + c$.

4. In a triangle ABC prove that the following assertions are equivalent:

(i)
$$A = 90^{\circ}$$
 , (ii) $r + r_b + r_c = r_a$, (iii) $r_b r_c = r r_a$.⁶

5. Generalise the previous result by proving that in a triangle ABC the following conditions are equivalent:

(i)
$$\cos A = \frac{\alpha - 1}{\alpha + 1}$$
, (ii) $r_b + r_c = \alpha (r_a - r)$, (iii) $r_b r_c = \alpha r r_a$

where $\alpha \neq -1$ is a constant. Compute the angle A in a triangle ABC in which

$$3r + r_b + r_c = 3r_a$$

6. Given a counterclockwise oriented right triangle ABC with $\langle A = \pi/2$, consider the counterclockwise oriented squares CPQA, ARSB, BTUC. Let m = |PU|, n = |ST| and prove that $m^2 - n^2 = 3(b^2 - c^2)$.⁷

²Consider the triangle BOA'.

¹Note that |AH| = 2|OA'|. Consider the triangle BOA'.

³Note that $OH \perp AH$ iff $|\tilde{A}H| = |OA'|$.

⁴Apply the sine rule in the triangle ABP.

⁵Note that $B = \left(\frac{B+C}{2}\right) + \left(\frac{B-C}{2}\right)$, $C = \left(\frac{B+C}{2}\right) - \left(\frac{B-C}{2}\right)$, $A = \frac{\pi}{2} - \left(\frac{B+C}{2}\right)$. ⁶Try to obtain $a^2 = b^2 + c^2$ and employ The theorem of Pythagoras.

⁷Apply the cosine rule in the triangles PCU and TBS.

7. In a triangle *ABC* prove that $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4} \left(a^2 + b^2 + c^2 \right)$.

8. In a triangle ABC prove that $\Delta = \frac{4}{3}\sqrt{\mu(\mu - m_a)(\mu - m_b)(\mu - m_c)}$ where $2\mu = m_a + m_b + m_c$.⁸

9. Let ABCD be a convex quadrilateral with side lenths a = |AB|, b = |BC|, c = |CD|, d = |DA| and diagonal of length m = |AC|. Let s be the semiperimeter of ABCD defined by 2s = a + b + c + d. Let Δ_{XYZ} stand for the area of a triangle XYZ.

- (A) Prove that $16\Delta_{ABC}^2 = 4a^2b^2 (a^2 + b^2 m^2)^2$.⁹
- (B) Prove that $16\Delta_{ACD}^2 = 4c^2d^2 (c^2 + d^2 m^2)^2$.
- (C) Prove that $32\Delta_{ABC}\Delta_{ACD} = 2(a^2 + b^2 m^2)(c^2 + d^2 m^2) 8abcd\cos(A + C)$.¹⁰
- (D) Let Δ stand for the area of the quadrilateral. Prove that

$$\Delta^2 = (s-a)(s-b)(s-c)(s-d) - abcd\cos^2\left(\frac{A+C}{2}\right) \,. \quad {}^{11}, {}^{12}$$

(E) In ancient times people were led by rough experiments to believe that the area of the quadrilateral ABCD was given by the formula

$$\Delta = \frac{1}{4}(a+c)(b+d)$$

Prove that this formula is correct only for rectangles and gives rise to too large a value for the area otherwise !

10. Let ABCD be a convex quadrilateral of area Δ with side lenths a = |AB|, b = |BC|, c = |CD|, d = |DA| and diagonals of length m = |AC|, n = |BD|.

- (A) Prove that $16\Delta^2 = 4m^2n^2\sin^2\theta$.
- (B) Prove that $16\Delta^2 = 4m^2n^2 (a^2 b^2 + c^2 d^2)^2$.¹³

¹¹Start with $\Delta^2 = \Delta^2_{ABC} + \Delta^2_{ACD} + 2\Delta_{ABC}\Delta_{ACD}$ and compute.

⁸Consider the triangle AA'K presented in the Problems (1) Pr. 5. Compare its area with the area of ABC.

⁹Start with $2\Delta_{ABC} = ab \sin A$, square both sides and employ the cosine rule in ABC.

¹⁰Start with $4\Delta_{ABC}\Delta_{ACD} = abcd \sin A \sin C$, replace $\sin A \sin C$ by $-\cos A + C + \cos A \cos C$ and employ the cosine rule in ABC and ACD.

¹²This formula is usually ascribed to the legendary Indian geometer Brahmagupta (~11th century). Notice how it reduces to the beautiful formula $\Delta = \sqrt{(s-a)(s-b)(s-c)(s-d)}$ for inscriptible quadrangles.

¹³Let x = |AS|, y = |BS|, z = |CS|, t = |DS| and note $16\Delta^2 = 4m^2n^2\sin^2\theta = 4m^2n^2\left(1-\cos^2\theta\right)$ and m = x + z, n = y + t, $2xy\cos\theta = x^2 + y^2 - a^2$, $2xt\cos(\pi - \theta) = x^2 + t^2 - d^2$ etc where $\theta = \angle BAD$. This formula usually ascribed to a mathematician named Bretschneider about whom, I regret to say that I know nothing.