Problems in Geometry (3)

1. Given a triangle ABC, let A' be the midpoint of [B, C] and consider $Y \in CA - \{C, A\}$, $Z \in AB - \{A, B\}$ such that BY and CZ meet on AA'. Prove that YZ is parallel to BC.¹

2. Given a triangle ABC, consider $P \in BC - \{B, C\}$, $Q \in CA - \{C, A\}$, $R \in AB - \{A, B\}$ such that AP, BQ, CR are concurrent. Let QR, RP, PQ meet BC, CA, AB in X, Y, Z respectively. Prove that

- (A) X, Y, Z are collinear.
- (B) AP, BY, CZ are concurrent or parallel.

3. Prove that in a triangle ABC the altitude through A, the median through B and the internal angle bisector through C are concurrent iff $\sin A = \cos B \tan C$.

4. Given a quadrilateral *ABCD*, consider $X \in AB - \{A, B\}, Y \in BC - \{B, C\}, Z \in CD - \{C, D\}, T \in DA - \{D, A\}.$

(A) Prove that if X, Y, Z, T are collinear then

$$\frac{XA}{XB} \cdot \frac{YB}{YC} \cdot \frac{ZC}{ZD} \cdot \frac{TD}{TA} = 1$$

(B) Is the converse true ?

5. Given a triangle ABC, let A', B', C' be midpoints of [B, C], [C, A], [A, B] respectively. Consider $L \in BC - \{B, C\}$, $M \in CA - \{C, A\}$, $N \in AB - \{A, B\}$ such that AL, BM, CN are concurrent. If P, Q, R are midpoints of AL BM, CN, respectively prove that PA', QB', RC' are concurrent.²

6. In a triangle ABC, let $J_a \in BC$, $J_b \in CA$, $J_c \in AB$ be chosen such that AJ_a , BJ_b , CJ_c be the respective internal angle bisectors at A, B, C. Let the perpendicular bisectors of $[A, J_a]$, $[B, J_b]$, $[C, J_c]$ intersect BC, CA, AB in X, Y, Z respectively. Prove that X, Y, Z are collinear.

¹It is sufficient to show that
$$\frac{YC}{VA} = \frac{ZB}{ZA}$$

²Observe that P, Q, R lie on the sides of the "medial triangle" A'B'C'.

7. Consider $X \in BC - \{B, C\}$, $Y \in CA - \{C, A\}$, $Z \in AB - \{A, B\}$. Let $X' \in BC - \{B, C\}$, $Y' \in CA - \{C, A\}$, $Z' \in AB - \{A, B\}$. be reflections of X, Y, Z in the respective midpoints of [B, C] [C, A], [A, B].

(A) Prove that AX, BY, CZ are concurrent or parallel iff AX', BY', CZ' are concurrent or parallel. ³

(B) Prove that X', Y', Z' are collinear iff X, Y, Z are collinear.⁴

(C) Prove that the areas of the triangles XYZ and X'Y'Z' are equal.

8. (A) Let the incircle of the triangle ABC touch BC, CA, AB in S, T, U respectively. Prove that AS, BT, CU concur.⁵

(B) Let the respective excircles opposite A, and B and C touch BC, CA, AB in S_a , T_a , U_a and S_b , T_b , U_b and S_c , T_c , U_c respectively. Prove that AS_a , BT_b , CU_c concur.⁶

(C) Prove that N is the isotomic conjugate of Γ .

9. Consider a triangle ABC and squares BPQC, CRSA, AUVB which have the same orientation as ABC. Let M_a M_b M_c be the respective centres of the squares BPQC, CRSA, AUVB. Prove that AM_a , BM_b , CM_c are concurrent.

³If AX, BY, CZ concur in M (an ordinary point or a point "at infinity") and AX', BY', CZ' concur in M° (again an ordinary point or a point "at infinity"), the points M and M° are said to be *isotomic* conjugates of one another with respect to the triangle ABC.

⁴If X, Y, Z lie on the line m and X', Y', Z' lie on the line m° the lines m and m° are said to be *isotomic* conjugates of one another with respect to the triangle ABC.

⁵The point in which AS, BT, CU concur is a remarkable point of ABC, called the Gergonne point of ABC. It is usually denoted by Γ .

⁶The point in which AS_a , BT_b , CU_c concur is a remarkable point of ABC, called the *Nagel point* of ABC. It is usually denoted by N.