1. Given a triangle $A B C$, let A^{\prime} be the midpoint of $[B, C]$ and consider $Y \in C A-\{C, A\}$, $Z \in A B-\{A, B\}$ such that $B Y$ and $C Z$ meet on $A A^{\prime}$. Prove that $Y Z$ is parallel to $B C .{ }^{1}$
2. Given a triangle $A B C$, consider $P \in B C-\{B, C\}, Q \in C A-\{C, A\}, R \in A B-\{A, B\}$ such that $A P, B Q, C R$ are concurrent. Let $Q R, R P, P Q$ meet $B C, C A, A B$ in X, Y, Z respectively. Prove that
(A) X, Y, Z are collinear.
(B) $A P, B Y, C Z$ are concurrent or parallel.
3. Prove that in a triangle $A B C$ the altitude through A, the median through B and the internal angle bisector through C are concurrent iff $\sin A=\cos B \tan C$
4. Given a quadrilateral $A B C D$, consider $X \in A B-\{A, B\}, Y \in B C-\{B, C\}, Z \in$ $C D-\{C, D\}, T \in D A-\{D, A\}$.
(A) Prove that if X, Y, Z, T are collinear then

$$
\frac{X A}{X B} \cdot \frac{Y B}{Y C} \cdot \frac{Z C}{Z D} \cdot \frac{T D}{T A}=1
$$

(B) Is the converse true ?
5. Given a triangle $A B C$, let $A^{\prime}, B^{\prime}, C^{\prime}$ be midpoints of $[B, C],[C, A],[A, B]$ respectively. Consider $L \in B C-\{B, C\}, M \in C A-\{C, A\}, N \in A B-\{A, B\}$ such that $A L, B M$, $C N$ are concurrent. If P, Q, R are midpoints of $A L B M, C N$, respectively prove that $P A^{\prime}, Q B^{\prime}, R C^{\prime}$ are concurrent.
6. In a triangle $A B C$, let $J_{a} \in B C, J_{b} \in C A, J_{c} \in A B$ be chosen such that $A J_{a}, B J_{b}$, $C J_{c}$ be the respective internal angle bisectors at A, B, C. Let the perpendicular bisectors of $\left[A, J_{a}\right],\left[B, J_{b}\right],\left[C, J_{c}\right]$ intersect $B C, C A, A B$ in X, Y, Z respectively. Prove that X, Y, Z are collinear.

[^0]7. Consider $X \in B C-\{B, C\}, Y \in C A-\{C, A\}, Z \in A B-\{A, B\}$. Let $X^{\prime} \in$ $B C-\{B, C\}, Y^{\prime} \in C A-\{C, A\}, Z^{\prime} \in A B-\{A, B\}$. be reflections of X, Y, Z in the respective midpoints of $[B, C][C, A],[A, B]$.
(A) Prove that $A X, B Y, C Z$ are concurrent or parallel iff $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ are concurrent or parallel. ${ }^{3}$
(B) Prove that $X^{\prime}, Y^{\prime}, Z^{\prime}$ are collinear iff X, Y, Z are collinear. ${ }^{4}$
(C) Prove that the areas of the triangles $X Y Z$ and $X^{\prime} Y^{\prime} Z^{\prime}$ are equal.
8. (A) Let the incircle of the triangle $A B C$ touch $B C, C A, A B$ in S, T, U respectively. Prove that $A S, B T, C U$ concur. ${ }^{5}$
(B) Let the respective excircles opposite A, and B and C touch $B C, C A, A B$ in S_{a}, T_{a}, U_{a} and S_{b}, T_{b}, U_{b} and S_{c}, T_{c}, U_{c} respectively. Prove that $A S_{a}, B T_{b}, C U_{c}$ concur. ${ }^{6}$
(C) Prove that N is the isotomic conjugate of Γ.
9. Consider a triangle $A B C$ and squares $B P Q C, C R S A, A U V B$ which have the same orientation as $A B C$. Let $M_{a} M_{b} M_{c}$ be the respective centres of the squares $B P Q C$, $C R S A, A U V B$. Prove that $A M_{a}, B M_{b}, C M_{c}$ are concurrent.

[^1]
[^0]: ${ }^{1}$ It is sufficient to show that $\frac{Y C}{Y A}=\frac{Z B}{Z A}$!
 ${ }^{2}$ Observe that P, Q, R lie on the sides of the "medial triangle" $A^{\prime} B^{\prime} C^{\prime}$.

[^1]: ${ }^{3}$ If $A X, B Y, C Z$ concur in M (an ordinary point or a point "at infinity") and $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ concur in M° (again an ordinary point or a point "at infinity"), the points M and M° are said to be isotomic conjugates of one another with respect to the triangle $A B C$.
 ${ }^{4}$ If X, Y, Z lie on the line m and $X^{\prime}, Y^{\prime}, Z^{\prime}$ lie on the line m° the lines m and m° are said to be isotomic conjugates of one another with respect to the triangle $A B C$.
 ${ }^{5}$ The point in which $A S, B T, C U$ concur is a remarkable point of $A B C$, called the Gergonne point of $A B C$. It is usually denoted by Γ.
 ${ }^{6}$ The point in which $A S_{a}, B T_{b}, C U_{c}$ concur is a remarkable point of $A B C$, called the Nagel point of $A B C$. It is usually denoted by N.

