1. Consider a quadrangle ABCD with points P, Q, R, S, T on BD, AB, AD, CB, CD respectively. Prove that if P, Q, R are collinear and P, S, T are collinear, then the lines QS, RT, AC are concurrent.

2. The following is a problem by the late Prof. Demir who liked to present it with a quaintly arithmetic notation which is very suggestive and delightful. A numeral m written decimally will stand for a point and given such numerals m, n the line through them is denoted by $m \cdot n$:

Given distinct non-collinear points 1, 2, 3, 4 consider points $12 \in 1 \cdot 2 - \{1, 2\}$, $23 \in 2 \cdot 3 - \{2, 3\}$, $34 \in 3 \cdot 4 - \{3, 4\}$. Let $1 \cdot 23$ and $12 \cdot 3$, $2 \cdot 34$ and $23 \cdot 4$ meet in 123, 234, respectively. Finally, let $1 \cdot 234$ intersect $123 \cdot 4$ in 1234. Prove that 12, 1234, 34 are collinear.

3. Given triangle ABC, let D be a point on BC, and P, Q points on AB. Let PD meet AC in H, QD meet AC in K and CP meet AD in M and CQ meet AD in N. Prove that KM and HN meet on AB.

4. Let ABC, DEF be triangles with AD, BE, CF concurrent. Prove that if AE, BF, CD are concurrent so are AF, BD and CE.

¹The Desargues Theorem

²The Desargues Theorem.

³The dual of the Pappus Theorem.

⁴The dual of the Pappus Theorem.