Problems in Geometry

1. Consider a quadrangle $A B C D$ with points P, Q, R, S, T on $B D, A B, A D, C B, C D$ respectively. Prove that if P, Q, R are collinear and P, S, T are collinear, then the lines $Q S, R T, A C$ are concurrent.
2. The following is a problem by the late Prof. Demir who liked to present it with a quaintly arithmetic notation which is very suggestive and delightful. A numeral m written decimally will stand for a point and given such numerals m, n the line through them is denoted by $m \cdot n$:

Given distinct non-collinear points $1,2,3,4$ consider points $12 \in 1 \cdot 2-\{1,2\}, 23 \in$ $2 \cdot 3-\{2,3\}, 34 \in 3 \cdot 4-\{3,4\}$. Let $1 \cdot 23$ and $12 \cdot 3,2 \cdot 34$ and $23 \cdot 4$ meet in 123 , 234 , respectively. Finally, let $1 \cdot 234$ intersect $123 \cdot 4$ in 1234. Prove that 12, 1234, 34 are collinear.
3. Given triangle $A B C$, let D be a point on $B C$, and P, Q points on $A B$. Let $P D$ meet $A C$ in $H, Q D$ meet $A C$ in K and $C P$ meet $A D$ in M and $C Q$ meet $A D$ in N. Prove that $K M$ and $H N$ meet on $A B$.
4. Let $A B C, D E F$ be triangles with $A D, B E, C F$ concurrent. Prove that if $A E, B F, C D$ are concurrent so are $A F, B D$ and $C E$.

[^0]
[^0]: ${ }^{1}$ The Desargues Theorem
 ${ }^{2}$ The Desargues Theorem.
 ${ }^{3}$ The dual of the Pappus Theorem.
 ${ }^{4}$ The dual of the Pappus Theorem.

