1. Characterise the set of points whereof the power with respect to a fixed circle is a constant.
2. Compute the power of the point $P\left(x_{0}, y_{0}\right)$ with respect to the circle $x^{2}+y^{2}+2 a x+2 b y+$ $c=0$. Write down the equation of the radical axis of the circles $x^{2}+y^{2}+2 a_{1} x+2 b_{1} y+c_{1}=0$ and $x^{2}+y^{2}+2 a_{2} x+2 b_{2} y+c_{2}=0$.
3. (A) Consider fixed non-concentric circles Γ_{1}, Γ_{2}. Prove that the set of points whereof the powers with respect to Γ_{1} and Γ_{2} differ by a constant is a line parallel to the radical axis of Γ_{1} and Γ_{2}.
(B) Prove that the set of points whereof the ratio of powers with respect to two given circles Γ_{1}, Γ_{2} is a constant is a circle the centre of which lies on the line joining centres of Γ_{1}, Γ_{2}.
4. (A) Given two circles which are orthogonal to one another, is it possible for the centre of one to lie on the other ?
(B) Let each one of the circles C_{1}, C_{2} intersect the circles Γ_{1}, Γ_{2} orthogonally. Prove that the radical axis of C_{1}, C_{2} is the line joining the centres of Γ_{1}, Γ_{2}.
5. Consider circles Γ and Δ which are tangent to the line k at the points $C, D \in k$ respectively. Prove that the radical axis of Γ and Δ bisects the line segment $[C, D]$.
6. Given a circle γ and coaxial ${ }^{1}$ circles $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, prove that the radical axes of γ and Γ_{1}, γ and Γ_{2}, γ and Γ_{3} are concurrent or parallel.
7. Given triangle $A B C$, let $\tilde{A}, \tilde{B}, \tilde{C}$ be the feet of the perpendiculars from A, B, C on $B C, C A, A B$ respectively. Let $B C$ and $\tilde{B} \tilde{C}, C A$ and $\tilde{C} \tilde{A}, A B$ and $\tilde{A} \tilde{B}$ meet in X, Y, Z respectively.
(A) Prove that X, Y, Z are collinear by employing the theorems of Menelaus and Ceva.
(B) Prove the same result by demonstrating that X, Y, Z lie on the radical axis of the circumcircle and the 9-point-circle of $A B C .{ }^{2}$
(C) Prove that the line containing X, Y, Z is perpendicular to the Euler line of $A B C$.

[^0]8. Let (I) touch $B C, C A, A B$ in S, T, U respectively. Let $\left(I_{a}\right)$ and $\left(I_{b}\right)$ and $\left(I_{c}\right)$ touch $B C, C A, A B$ in S_{a}, T_{a}, U_{a} and S_{b}, T_{b}, U_{b} and S_{c}, T_{c}, U_{c} respectively. Let Y, Z be the respective midpoints of the line segments $\left[T_{b}, T_{c}\right],\left[U_{b}, U_{c}\right]$.
(A) Suppose that $\left(I_{b}\right)$ and $\left(I_{c}\right)$ are not congruent. (Y and Z are distinct!) Employ the thorem of Menelaus to prove that $Y Z$ bisects the line segment $[B, C]$.
(B) Compute the powers of Y, Z with respect to the circles $\left(I_{b}\right)$ and $\left(I_{c}\right)$.
(C) Suppose that $\left(I_{b}\right)$ and $\left(I_{c}\right)$ are not congruent. Prove without using the thorem of Menelaus that $Y Z$ bisects the line segments $[B, C]$ and $\left[S_{b}, \bar{S}_{c}\right]$.
(D) Let $A^{\prime}, B^{\prime}, C^{\prime}$, be the midpoints of $[B, C],[C, A][A, B]$. Prove that the incenter of $A^{\prime} B^{\prime} C^{\prime}$ is the radical center of $\left(I_{a}\right),\left(I_{b}\right),\left(I_{c}\right)$.
\diamond The incenter of $A^{\prime} B^{\prime} C^{\prime}$ is called the Spieker point of $A B C$, denoted by Σ. \diamond
(E) Prove that Σ is the center of gravity of the set $[B, C] \cup[C, A] \cup[A, B] .^{3}$
9. (A) Given a triangle $U V W$ and points $P \in U W, Q \in U V$, let β, γ be circles with respective diameters $[V, P],[W, Q]$. Prove that the orthocenter of $U V W$ lies on the radical axis of β and γ.
(B) Consider a quadrangle $A B C D$ with $A C \cap B D=\{F\}$. Let K, L be the orthocenters of $A F D, B F C$, let S, T be the midpoints of $[A, B],[C, D]$ respectively. Prove that $K L \perp$ $S T .{ }^{4}$
(C) Let Y, Z be the respective centroids of $C F D$, $A F B$. prove that $K L \perp Y Z$.

[^1]
[^0]: ${ }^{1}$ By this expression it is meant that the three pairs of circles Γ_{1} and Γ_{2}, Γ_{2} and Γ_{3}, Γ_{3} and Γ_{1} have the same radical axis.
 ${ }^{2}$ Consider the circle with diameter $[B C]$.

[^1]: ${ }^{3}$ Concentrate each edge of the triangle into a point lying at its midpoint. Let that point have a mass proportional to the length of the edge.
 ${ }^{4}$ Consider the circles of diameters $[A, B],[C, D]$.

