1. Characterise the set of points whereof the power with respect to a fixed circle is a constant.

2. Compute the power of the point $P(x_0, y_0)$ with respect to the circle $x^2 + y^2 + 2ax + 2by + c = 0$. Write down the equation of the radical axis of the circles $x^2 + y^2 + 2a_1x + 2b_1y + c_1 = 0$ and $x^2 + y^2 + 2a_2x + 2b_2y + c_2 = 0$.

3. (A) Consider fixed non-concentric circles Γ_1 , Γ_2 . Prove that the set of points whereof the powers with respect to Γ_1 and Γ_2 differ by a constant is a line parallel to the radical axis of Γ_1 and Γ_2 .

(B) Prove that the set of points whereof the ratio of powers with respect to two given circles Γ_1 , Γ_2 is a constant is a circle the centre of which lies on the line joining centres of Γ_1 , Γ_2 .

4. (A) Given two circles which are orthogonal to one another, is it possible for the centre of one to lie on the other ?

(B) Let each one of the circles C_1 , C_2 intersect the circles Γ_1 , Γ_2 orthogonally. Prove that the radical axis of C_1 , C_2 is the line joining the centres of Γ_1 , Γ_2 .

5. Consider circles Γ and Δ which are tangent to the line k at the points $C, D \in k$ respectively. Prove that the radical axis of Γ and Δ bisects the line segment [C, D].

6. Given a circle γ and coaxial ¹ circles Γ_1 , Γ_2 , Γ_3 , prove that the radical axes of γ and Γ_1 , γ and Γ_2 , γ and Γ_3 are concurrent or parallel.

7. Given triangle ABC, let \tilde{A} , \tilde{B} , \tilde{C} be the feet of the perpendiculars from A, B, C on BC, CA, AB respectively. Let BC and $\tilde{B}\tilde{C}$, CA and $\tilde{C}\tilde{A}$, AB and $\tilde{A}\tilde{B}$ meet in X, Y, Z respectively.

(A) Prove that X, Y, Z are collinear by employing the theorems of Menelaus and Ceva.

(B) Prove the same result by demonstrating that X, Y, Z lie on the radical axis of the circumcircle and the 9-point-circle of ABC.²

(C) Prove that the line containing X, Y, Z is perpendicular to the Euler line of ABC.

¹By this expression it is meant that the three pairs of circles Γ_1 and Γ_2 , Γ_2 and Γ_3 , Γ_3 and Γ_1 have the same radical axis.

²Consider the circle with diameter [BC].

8. Let (I) touch BC, CA, AB in S, T, U respectively. Let (I_a) and (I_b) and (I_c) touch BC, CA, AB in S_a , T_a , U_a and S_b , T_b , U_b and S_c , T_c , U_c respectively. Let Y, Z be the respective midpoints of the line segments $[T_b, T_c]$, $[U_b, U_c]$.

(A) Suppose that (I_b) and (I_c) are not congruent. (Y and Z are distinct !) Employ the thorem of Menelaus to prove that YZ bisects the line segment [B, C].

(B) Compute the powers of Y, Z with respect to the circles (I_b) and (I_c) .

(C) Suppose that (I_b) and (I_c) are not congruent. Prove without using the thorem of Menelaus that YZ bisects the line segments [B, C] and $[S_b, \overline{S_c}]$.

(D) Let A', B', C', be the midpoints of [B, C], [C, A] [A, B]. Prove that the incenter of A'B'C' is the radical center of (I_a) , (I_b) , (I_c) .

♦ The incenter of A'B'C' is called the *Spieker point* of *ABC*, denoted by Σ. ♦

(E) Prove that Σ is the center of gravity of the set $[B, C] \cup [C, A] \cup [A, B]$.³

9. (A) Given a triangle UVW and points $P \in UW$, $Q \in UV$, let β, γ be circles with respective diameters [V, P], [W, Q]. Prove that the orthocenter of UVW lies on the radical axis of β and γ .

(B) Consider a quadrangle ABCD with $AC \cap BD = \{F\}$. Let K, L be the orthocenters of AFD, BFC, let S, T be the midpoints of [A, B], [C, D] respectively. Prove that $KL \perp ST$.⁴

(C) Let Y, Z be the respective centroids of CFD, AFB. prove that $KL \perp YZ$.

³Concentrate each edge of the triangle into a point lying at its midpoint. Let that point have a mass proportional to the length of the edge.

⁴Consider the circles of diameters [A, B], [C, D].