Problems in Geometry (7)

1. Let φ be an ellipse with foci F, F'. If the tangent lines at $A, B \in \varphi$ intersect in P, prove that $PF \perp FA$ iff $F \in AB$.¹

2. Let φ be an ellipse with foci F, F'. Let t, t' be the tangents to φ which intersect in P. If H, H' are respectively the feet of the perpendiculars from F on t, t', prove that PF' is perpendicular to HH'.²

3. Let φ be an ellipse of foci F, F'. Let $\varphi \cap FF' = \{A, A'\}$. Let ℓ, ℓ' be the tangents to φ . at A, A'. For any tangent t to φ at $M \in \varphi$ let $t \cap \ell = \{P\}, t \cap \ell' = \{P'\}$.

- (A) Prove that $\langle (FP, FP') = \langle (F'P, F'P') = \pi/2^{-3}$.
- (B) Prove that FP, F'P' intersect on the normal to φ at M.⁴

4. Let φ be an ellipse of foci F, F'. Consider $X \in \varphi$. Let Q, Q' be the points in which the normal of φ at X intersects the perpendiculars to XF, XF' erected at F, F' respectively. Prove that, the perpendicular bisector of [FF'] bisects [Q, Q'].

5. Consider an ellipse φ with foci F, F'. Let a line through F meet φ in X, X'. If the normals to φ at X, X' intersect in N, prove that the parallel to FF' through N bisects [XX'].⁵

6. (A) Let φ be an ellipse. Prove that the set of points from which the tangents to φ are perpendicular to one another, is a circle. ⁶ ⁷

(B) Let φ, ψ be ellipses with common foci. Prove that the locus of the point of intersection of tangents to φ, ψ which are perpendicular to each other, is a circle.

 $^{3}\mathrm{Apply}$ the second theorem of Poncelet to the tangent lines t,l first and then to the tangent lines t,l' .

 $^5\mathrm{Use}$ the characterisation III to construct the normals.

⁶The Monge circle.

$$|PA|^2 + |PC|^2 = |PB|^2 + |PD|^2$$

holds for any point ${\cal P}$.

¹Employ the second theorem of Poncelet.

 $^{^2}P,\,F,\,H,H'$ are concyclic. Employ the first theorem of Poncelet.

⁴The normal at M is the internal bisector of FMF'. FP, F'P' are external bisectors of what ?

 $^{^7\}mathrm{Use}$ the characterisation III and remember that for any rectangle ABCD

7. Notice that Characterisation II is the same as Characterisation III for a parabola.

- (A) Describe tangents to a parabola by means of Characterisation II.⁸
- (B) State and prove the first theorem of Poncelet for a parabola.
- (C) State and prove the second theorem of Poncelet for a parabola.

(D) On a parabola of focus F, consider points X, Y such that $F \in XY$. Let the tangents to the parabola at X, Y intersect in P. Prove that the following assertions are equivalent :

(i)
$$F \in XY$$

(ii) $FP \perp FX$
(iii) $PX \perp PY$

8. (A) Consider a line d and a point $F \notin d$. Let circles ξ , η through F touch d at X, Y respectively and $\xi \cap \eta = \{F, M\}$. Prove that FM bisects [XY].

(B) Prove that in a parabola the reflection of the focus in a tangent lies on the directrix.

(C) Consider a parabola φ , points $A, B \in \varphi$. Prove that the tangents to φ at A, B intersect on the directrix of φ iff AB goes through the focus of φ .

⁸Precisely, you are expected to describe tangent lines in terms of the focus and the directrix.