- **1.** (A) What is the image of the line 2x + y = 2 under TR_u where u = [-1, 3]?
 - (B) What is the image of the line x = 1 under $\operatorname{Rot}_{(0,0),\pi/4}$?
 - (C) What is the image of the line x + y = 1 under Ref_k , where k is the line y = 2x?¹

(D) Let P, Q be distinct points. Prove that half-turns in P and Q together give rise to a translation. Which ?

(E) What is the image of the circle $x^2 + y^2 - 2x - 8 = 0$ under $HT_{(5,1)}$?

- (F) What is the image of the circle $x^2 + y^2 2y 3 = 0$ under Hom_{(2,1),3}?
- (G) What is the image of the line x + 2y 5 = 0 under Hom_{(1,1),3}?

2. Consider a triangle ABC and equilateral triangles BUC, CVA, AWB which have the same orientation as ABC. Let M_a , M_b , M_c be the respective centres of the equilateral triangles BUC, CVA, AWB.

- (A) Prove that $\operatorname{Rot}_{M_a,2\pi/3} \circ \operatorname{Rot}_{M_b,2\pi/3} = \operatorname{Rot}_{M_c,4\pi/3}$.
- (B) Prove that $M_a M_b M_c$ is an equilateral triangle.²

3. Consider a convex positively oriented quadrangle *ABCD* with positively oriented equilateral triangles *BAP*, *CBQ*, *DCR*, *ADS*, constructed on its sides. Let

$$\alpha = \operatorname{Rot}_{P,\pi/3} \circ \operatorname{Rot}_{Q,\pi/3} \circ \operatorname{Rot}_{R,\pi/3}$$
$$\beta = \operatorname{Rot}_{Q,\pi/3} \circ \operatorname{Rot}_{R,\pi/3}) \circ \operatorname{Rot}_{S,\pi/3}$$

(A) Prove that α and β are halfturns. Find their fixed points.

(B) Let A' be the image of A under $\beta \circ \alpha$. What can you say about the quadrangle AA'BD ?

(C) Consider the point J such that JQR be a positively oriented isosceles triangle with $\angle QJR = 2\pi/3$. If K is the midpoint of [A, D] evaluate the angles $\angle PKJ$, $\angle KJP$, $\angle JPK$.

4. Consider a convex positively oriented pentagon ABCDE with positively oriented squares BAPQ, CBRS, DCTU, EDVW, AEXY constructed on its sides with respective centers M_a , M_b , M_c , M_d , M_e .

¹Obviously the angle that the first line makes with the horizontal is $\arctan 2$. Compute the angle which the image of k makes with the horizontal.

²A romantically resilient rather than historically well-founded tradition ascribes this result to Napoléon Bonaparte !

(A) What is the image of A under the isometry $\Psi = \operatorname{Rot}_{M_d, -\pi/2} \circ \operatorname{Rot}_{M_c, -\pi/2} \circ \operatorname{Rot}_{M_b, -\pi/2} \circ \operatorname{Rot}_{M_a, -\pi/2}$?

(B) What is the image of Y under Ψ ?

5. Consider a triangle ABC and squares BPQC, CRSA, AUVB which have the same orientation as ABC. Let M_a M_b M_c be the respective centres of the squares BPQC, CRSA, AUVB.

- (A) Prove that $|AM_a| = |M_bM_c|$.
- (B) Prove that AM_a is perpendicular to M_bM_c .³
- (C) Prove that AM_a, BM_b, CM_c are concurrent.

7. Given distinct points X, Y, Z let $\operatorname{Hom}_{X,\lambda}(B) = C$, $\operatorname{Hom}_{Y,\mu}(C) = A$, $\operatorname{Hom}_{Z,\nu}(A) = B$ where $\lambda, \mu, \nu \notin \{0, 1\}$.

(A)Write down and prove a necessary and sufficient condition in terms of λ , μ , ν for X, Y, Z to be collinear.⁴

(B) State and prove the analogous condition for AX, BY, CZ to be concurrent.

8. Let ABC be a triangle with orthocenter H, centroid G, and circumcircle O.

(A) Prove that the respective circumcenters O_a , O_b , O_c of the triangles HBC, HCA, HAB are the reflections of O in BC, CA, AB respectively.

(B) Prove that a half-turn sends ABCH into $O_aO_bO_cO$. Which ?

9. Let the circles Γ , Γ' of respective centers O, O' and points A, A' be given. Prove that it is in general possible to construct points $B \in \Gamma, A' \in \Gamma'$ such that AA' is parallel to BB' and |AA'| = |BB'|.⁵

³Consider rotations $\operatorname{Rot}_{M_a,\pi/2}$ and $\operatorname{Rot}_{M_c,\pi/2}$ and notice that they combine to give rise to a halfturn about the midpoint K of [A, C]. Argue that KM_aM_c is a right isosceles triangle and argue further with $\operatorname{Rot}_{K,\pi/2}$.

⁴Theorem of Menelaus !

 $^{^5\}mathrm{Consider}$ the effect of TR_u where $\mathsf{u}=\overrightarrow{AA'}$ on Γ .