1. (A) What is the image of the line $2 x+y=2$ under $\operatorname{TR}_{\mathrm{u}}$ where $\mathbf{u}=[-1,3]$?
(B) What is the image of the line $x=1$ under $\operatorname{Rot}_{(0,0), \pi / 4}$?
(C) What is the image of the line $x+y=1$ under Ref_{k}, where k is the line $y=2 x ?^{1}$
(D) Let P, Q be distinct points. Prove that half-turns in P and Q together give rise to a translation. Which ?
(E) What is the image of the circle $x^{2}+y^{2}-2 x-8=0$ under $\operatorname{HT}_{(5,1)}$?
(F) What is the image of the circle $x^{2}+y^{2}-2 y-3=0$ under $\operatorname{Hom}_{(2,1), 3}$?
(G) What is the image of the line $x+2 y-5=0$ under $\operatorname{Hom}_{(1,1), 3}$?
2. Consider a triangle $A B C$ and equilateral traiangles $B U C, C V A, A W B$ which have the same orientation as $A B C$. Let M_{a}, M_{b}, M_{c} be the respective centres of the equilateral triangles $B U C, C V A, A W B$.
(A) Prove that $\operatorname{Rot}_{M_{a}, 2 \pi / 3} \circ \operatorname{Rot}_{M_{b}, 2 \pi / 3}=\operatorname{Rot}_{M_{c}, 4 \pi / 3}$.
(B) Prove that $M_{a} M_{b} M_{c}$ is an equilateral triangle. ${ }^{2}$
3. Consider a convex positively oriented quadrangle $A B C D$ with positively oriented equilateral triangles $B A P, C B Q, D C R, A D S$, constructed on its sides. Let

$$
\begin{aligned}
& \alpha=\operatorname{Rot}_{P, \pi / 3} \circ \operatorname{Rot}_{Q, \pi / 3} \circ \operatorname{Rot}_{R, \pi / 3} \\
& \left.\beta=\operatorname{Rot}_{Q, \pi / 3} \circ \operatorname{Rot}_{R, \pi / 3}\right) \circ \operatorname{Rot}_{S, \pi / 3}
\end{aligned}
$$

(A) Prove that α and β are halfturns. Find their fixed points.
(B) Let A^{\prime} be the image of A under $\beta \circ \alpha$. What can you say about the quadrangle $A A^{\prime} B D$?
(C) Consider the point J such that $J Q R$ be a positively oriented isosceles triangle with $\angle Q J R=2 \pi / 3$. If K is the midpoint of $[A, D]$ evaluate the angles $\angle P K J, \angle K J P, \angle J P K$.
4. Consider a convex positively oriented pentagon $A B C D E$ with positively oriented squares $B A P Q, C B R S, D C T U, E D V W, A E X Y$ constructed on its sides with respective centers $M_{a}, M_{b}, M_{c}, M_{d}, M_{e}$.

[^0](A) What is the image of A under the isometry $\Psi=\operatorname{Rot}_{M_{d},-\pi / 2} \circ \operatorname{Rot}_{M_{c},-\pi / 2} \circ$ $\operatorname{Rot}_{M_{b},-\pi / 2} \circ \operatorname{Rot}_{M_{a},-\pi / 2} ?$
(B) What is the image of Y under Ψ ?
5. Consider a triangle $A B C$ and squares $B P Q C, C R S A, A U V B$ which have the same orientation as $A B C$. Let $M_{a} M_{b} M_{c}$ be the respective centres of the squares $B P Q C$, $C R S A, A U V B$.
(A) Prove that $\left|A M_{a}\right|=\left|M_{b} M_{c}\right|$.
(B) Prove that $A M_{a}$ is perpendicular to $M_{b} M_{c} .{ }^{3}$
(C) Prove that $A M_{a}, B M_{b}, C M_{c}$ are concurrent.
7. Given distinct points X, Y, Z let $\operatorname{Hom}_{X, \lambda}(B)=C, \operatorname{Hom}_{Y, \mu}(C)=A, \operatorname{Hom}_{Z, \nu}(A)=B$ where $\lambda, \mu, \nu \notin\{0,1\}$.
(A)Write down and prove a necessary and sufficient condition in terms of λ, μ, ν for X, Y, Z to be collinear. ${ }^{4}$
(B) State and prove the analogous condition for $A X, B Y, C Z$ to be concurrent.
8. Let $A B C$ be a triangle with orthocenter H, centroid G, and circumcircle O.
(A) Prove that the respective circumcenters O_{a}, O_{b}, O_{c} of the triangles $H B C, H C A$, $H A B$ are the reflections of O in $B C, C A, A B$ respectively.
(B) Prove that a half-turn sends $A B C H$ into $O_{a} O_{b} O_{c} O$. Which ?
9. Let the circles Γ, Γ^{\prime} of respective centers O, O^{\prime} and points A, A^{\prime} be given. Prove that it is in gener al possible to construct points $B \in \Gamma, A^{\prime} \in \Gamma^{\prime}$ such that $A A^{\prime}$ is parallel to $B B^{\prime}$ and $\left|A A^{\prime}\right|=\left|B B^{\prime}\right| .{ }^{5}$

[^1]
[^0]: ${ }^{1}$ Obviously the angle that the first line makes with the horizontal is $\arctan 2$. Compute the angle which the image of k makes with the horizontal.
 ${ }^{2}$ A romantically resilient rather than historically well-founded tradition ascribes this result to Napoléon Bonaparte!

[^1]: ${ }^{3}$ Consider rotations $\operatorname{Rot}_{M_{a}, \pi / 2}$ and $\operatorname{Rot}_{M_{c}, \pi / 2}$ and notice that they combine to give rise to a halfturn about the midpoint K of $[A, C]$. Argue that $K M_{a} M_{c}$ is a right isosceles triangle and argue further with $\operatorname{Rot}_{K, \pi / 2}$.
 ${ }^{4}$ Theorem of Menelaus !
 ${ }^{5}$ Consider the effect of TR_{u} where $\mathrm{u}=\overrightarrow{A A^{\prime}}$ on Γ.

