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Basic Geometric Transformations

●  Geometric transformations are used to transform the 
objects and the camera in a scene (for animation or 
modelling) and are also used to transform World 
Coordinates to View Coordinates

●  Given the shape,  transform all the points of the 
shape? Transform the points and/or vectors describing 
it.

●  For example: 
Polygon: corner points 
Circle, Ellipse: center point(s), point at angle 0

●  Some transformations preserves some of the 
attributes like sizes, angles, ratios of the shape.



Translation

●  Simply move the object to a relative position.
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Rotation

●  A rotation is defined by a rotation axis and a 
rotation angle. 

●  For 2D rotation, the parameters are rotation 
angle (θ) and the rotation point (xr  ,yr  ). 

●  We reposition the object in a circular path 
arround the rotation point (pivot point)
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Rotation

●  When (xr  ,yr  )=(0,0) we have
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Rotation

●  Rotation around an arbitrary point (xr  ,yr  )

●  This equations can be written as matrix 
operations (we will see when we discuss 
homogeneous coordinates).
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Scaling

●  Change the size of an object. Input: scaling 
factors (sx  ,sy  )
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Homogenous Coordinates
●  All transformations can be represented by matrix 

operations.

●  Translation is additive, rotation and scaling is 
multiplicative (+ additive if you rotate around an 
arbitrary point or scale around a fixed point); making 
the operations complicated.

●  Adding another dimension to transformations make 
translation also representable by multiplication. 
Cartesian coordinates vs homogenous coordinates.
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●  Many points in homogenous coordinates can 
represent the same point in Cartesian 
coordinates. 

●  In homogenous coordinates, all 
transformations can be written as matrix 
multiplications.



Transformations in Homogenous C.

●  Translation

●  Rotation

●  Scaling
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Composite Transformations

●  Application of a sequence of transformations 
to a point:
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Composite Transformations

●  First: composition of similar type 
transformations

●  If we apply to successive translations to a 
point: 
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Rotation around a pivot point
–  Translate the object so that the 

pivot point moves to the origin

–  Rotate around origin

–  Translate the object so that the 
pivot point is back to its original 
position
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Scaling with respect to a fixed point

–  Translate to origin

–  Scale

–  Translate back
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Order of matrix compositions

●  Matrix composition is not commutative. So, 
be careful when applying a sequence of 
transformations.

pivot same pivot



Other Transformations

●  Reflection
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●  Shear: Deform the shape like shifted slices.

(1,1)
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(2,1)
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Transformations Between the 
Coordinate Systems

●  Between different systems: Polar coordinates 
to cartesian coordinates

●  Between two cartesian coordinate systems. 
For example, relative coordinates or window 
to viewport transformation.



●  How to transform from x,y 
to x',y' ?

●  Superimpose x',y' to x,y

●  Transformation:

–  Translate so that (x0 ,y0 ) 
moves to (0,0) of x,y

–  Rotate x' axis onto x axis
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●  Alternate method for rotation: 
Specify a vector V for positive 
y'  axis:
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●  Elements of any rotation matrix can be expressed as 
elements of a set of orthogonal unit vectors:
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●  Example:

x
x'

y
y'

P

0P

( ) ( )

| |
( ) ( )

( )

( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

−−⋅

−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

111

1.220.6

1.610.8
111

121

443                                                                            
100

20.80.6

10.60.8

100

110

201

100

00.80.6

00.60.8
12,

0.60.8,

0.6,0.8
2.5
2

2.5
1.5

21.5
1.5,2

3.5,32,1

22
0

0

=T

=
=,=

=,=
+

==

==

M

TvuRM

=u
PP
PPv

PP

0

TM T

Let triangle T  be defined as
three column vectors: 



Affine Transformations

●  Coordinate transformations of the form:

●  Translation, rotation, scaling, reflection, shear. Any 
affine transformation can be expressed as the 
combination of these.

●  Rotation, translation, reflection: 
preserve angles, lengths, parallel lines
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3D Transformations

●  x,y,z coordinates. Usual notation: 
Right handed coordinate system

●  Analogous to 2D we have 4 dimensions                      
in homogenous coordinates.

●  Basic transformations:

–  Translation

–  Rotation

–  Scaling
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Translation

●  move the object to a relative position.
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Rotation

●  Rotation arround the coordinate axes 

x axis y axis z axis
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Rotation around coordinate axes

●  Arround x

●  Arround y

●  Arround z
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Rotation Arround a Parallel Axis

●  Rotating the object around a line parallel to one of the 
axes: Translate to axis, rotate, translate back.
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Figure from the textbook



Rotation Around an Arbitrary Axis

●  Translate the object so that the 
rotation axis passes though the 
origin

●  Rotate the object so that the 
rotation axis is aligned with one of 
the coordinate axes

●  Make the specified rotation

●  Reverse the axis rotation

●  Translate back
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Rotation Around an Arbitrary Axis



Rotation Around an Arbitrary Axis
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with z axis.



Rotation Around an Arbitrary Axis

z
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Align u with the z  axis 
1) rotate around x  axis to get u into the xz  plane, 
2) rotate around y  axis to get u aligned with the z axis
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Dot product and Cross Product

●  v dot u = vx * ux + vy * uy + vz * uz. That 
equals also to |v|*|u|*cos(a) if a is the angle 
between v and u vectors. Dot product is zero 
if vectors are perpendicular. 

v x u is a vector that is perpendicular to both 
vectors you multiply. Its length is 
|v|*|u|*sin(a), that is an area of 
parallelogram built on them. If v and u are 
parallel then the product is the null vector. 



Rotation Around an Arbitrary Axis
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Rotation Around an Arbitrary Axis
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1) rotate around x  axis to get u into the xz  plane,
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Rotation, ... Alternative Method
Any rotation around origin can be represented by 
3 orthogonal unit vectors:
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Rotation, ... Alternative Method
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Scaling

●  Change the coordinates of the object by scaling 
factors.
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Scaling with respect to a Fixed Point

●  Translate to origin, scale, translate back
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Scaling with respect to a Fixed Point
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Reflection

●  Reflection over planes, lines or points

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Shear

●  Deform the shape depending on another dimension

SH z

1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1

x  and y value depends on z  value of the shape

SH x

1 0 0 0
a 1 0 0
b 0 1 0
0 0 0 1

y  and z value depends on x  value of the shape



OpenGL Geometric-Transformation 
Functions

●  In the core OpenGL library, 

–  a separate function is available for each basic 
transformation (translate, rotate, scale)

–  all transformations are specified in 3D

●  Parameters

–  Translation: translation amount in x, y, z axes

–  Rotation: angle, orientation of the rotation axis 
that passes through the origin

–  Scaling:  scaling factors for three coordinates



Basic OpenGL Transformations

●  glTranslate* (tx, ty, tz);

–  For 2D applications set tz = 0

●  glRotate* (theta, vx, vy, vz);

–  theta in degrees

–  The rotation axis is defined by the vector 
(vx,vy,vz), i.e., P0 = (0,0,0) P1 = (vx,vy,vz)

●  glScale* (sx, sy, sz);

–  Use negative values to get reflection 
transformation



OpenGL Matrix Operations

●  glMatrixMode (GL_MODELVIEW);

–  modelview mode to tell OpenGL that we will 
be specifying geometric transformations. The 
command simply says that the current matrix 
operations will be applied on the 4 by 4 
modelview matrix.

–  the other mode is the projection mode, which 
specifies the matrix that is used of projection 
transformations (i.e., how a scene is 
projected onto the screen)

–  There are also color and texture modes that 
we will discuss later



OpenGL Matrix Operations

●  Once you are in the modelview mode, a call to a 
transformation routine generates a matrix that is 
multiplied by the current matrix for that mode

●  Whatever object defined is multiplied with the 
current matrix

●  The contents of the current matrix can also be 
manipulated explicitly

–  glLoadIdentity();

–  glLoadMatrix* (elements16);

where elements16 is a single subscripted array that 
specifies a matrix in column-major order  



OpenGL Matrix Operations

●  Example:

for (int k=0; k<16;k++)

elements16[k]=(float)k;

glLoadMatrixf(elements16);

will produce the matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.150.110.70.3
0.140.100.60.2
0.130.90.50.1
0.120.80.40.0

M



OpenGL Matrix composition

●  glMultMatrix* (otherElements16)

–  The current matrix is postmultiplied with 
the matrix specified in otherElements16

what does this imply?

MMM ′⋅= currcurr

In a sequence of transformation commands, the last
one specified  in the code will be the first 
transformation to be applied.



OpenGL Matrix Stacks

●  OpenGL maintains a matrix stack for all the 
four matrix modes

●  When we apply geometric transformations 
using OpenGL functions, the 4 by 4 matrix at 
the top of the matrix stack is modified

●  The top is also called the current matrix

●  If we want to create multiple transformation 
sequences and save the composition results 
we can make use of the OpenGL matrix stack



OpenGL Matrix Stacks

●  Initially, there is only the identity matrix in 
the stack

●  To find out how many matrices are currently 
in the stack:
–  glGetIntegerv(GL_MODELVIEW_STACK_DEPTH,numMats)

●  glPushMatrix ();

–  The current matrix is copied and stored in the second 
stack position

●  glPopMatrix ();

–  Destroys the matrix at the top and the second matrix in 
the stack becomes the current matrix
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