Geometric Transformations

Ceng 477 Introduction to Computer Graphics Fall 2007
Computer Engineering METU

2D Geometric Transformations

Basic Geometric Transformations

- Geometric transformations are used to transform the objects and the camera in a scene (for animation or modelling) and are also used to transform World Coordinates to View Coordinates
- Given the shape, transform all the points of the shape? Transform the points and/or vectors describing it.
- For example:

Polygon: corner points
Circle, Ellipse: center point(s), point at angle 0

- Some transformations preserves some of the attributes like sizes, angles, ratios of the shape.

Translation

. Simply move the object to a relative position.

$$
\begin{gathered}
x^{\prime}=x+t_{x} \quad y^{\prime}=y+t_{y} \\
\mathbf{P}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \mathbf{T}=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right] \quad \mathbf{P}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \\
\mathbf{P}^{\prime}=\mathbf{P}+\mathbf{T}
\end{gathered}
$$

Rotation

- A rotation is defined by a rotation axis and a rotation angle.
- For 2D rotation, the parameters are rotation angle (θ) and the rotation point $\left(x_{r} y_{r}\right)$.
- We reposition the object in a circular path arround the rotation point (pivot point)

Rotation

- When $\left(x_{r}, y_{r}\right)=(0,0)$ we have
$x^{\prime}=r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta$
$y^{\prime}=r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta$

The original coordinates are: $\quad x=r \cos \phi$

$$
y=r \sin \phi
$$

Substituting them in the first equation we get:

$$
\begin{aligned}
x^{\prime} & =x \cos \theta-y \sin \theta \\
y^{\prime} & =x \sin \theta+y \cos \theta
\end{aligned}
$$

In the matrix form we have: $\quad \mathbf{P}^{\prime}=\mathbf{R} \cdot \mathbf{P}$
where $\quad \mathbf{R}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Rotation

- Rotation around an arbitrary point (x_{r}, y_{r})

$$
\begin{aligned}
x^{\prime} & =x_{r}+\left(x-x_{r}\right) \cos \theta-\left(y-y_{r}\right) \sin \theta \\
y^{\prime} & =y_{r}+\left(x-x_{r}\right) \sin \theta+\left(y-y_{r}\right) \cos \theta
\end{aligned}
$$

- This equations can be written as matrix operations (we will see when we discuss homogeneous coordinates).

Scaling

- Change the size of an object. Input: scaling factors (s_{x}, s_{y})

$$
\begin{gathered}
x^{\prime}=x s_{x} \quad y^{\prime}=y s_{y} \\
\mathbf{S}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
\end{gathered}
$$

$$
\mathbf{P}^{\prime}=\mathbf{S} \cdot \mathbf{P}
$$

non-uniform vs. uniform scaling

Homogenous Coordinates

- All transformations can be represented by matrix operations.
- Translation is additive, rotation and scaling is multiplicative (+ additive if you rotate around an arbitrary point or scale around a fixed point); making the operations complicated.
- Adding another dimension to transformations make translation also representable by multiplication. Cartesian coordinates vs homogenous coordinates.

$$
x=\frac{x_{h}}{h} \quad y=\frac{y_{h}}{h} \quad P=\left[\begin{array}{c}
x_{h} \\
y_{h} \\
h
\end{array}\right]=\left[\begin{array}{c}
h \cdot x \\
h \cdot y \\
h
\end{array}\right]
$$

- Many points in homogenous coordinates can represent the same point in Cartesian coordinates.
- In homogenous coordinates, all transformations can be written as matrix multiplications.

Transformations in Homogenous C.

- Translation

$$
\begin{aligned}
T\left(t_{x}, t_{y}\right) & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \\
P^{\prime} & =T\left(t_{x}, t_{y}\right) \cdot P
\end{aligned}
$$

- Rotation

$$
\begin{aligned}
& R(\theta)= {\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] } \\
& P^{\prime}=R(\theta) \cdot P
\end{aligned}
$$

- Scaling

$$
\begin{gathered}
S\left(s_{x}, s_{y}\right)=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
P^{\prime}=S\left(s_{x}, s_{y}\right) \cdot P
\end{gathered}
$$

Composite Transformations

- Application of a sequence of transformations to a point:

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathbf{M}_{2} \cdot \mathbf{M}_{1} \cdot \mathbf{P} \\
& =\mathbf{M} \cdot \mathbf{P}
\end{aligned}
$$

Composite Transformations

- First: composition of similar type transformations
- If we apply to successive translations to a point:

$$
\begin{aligned}
\mathbf{P}^{\prime} & =\mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot\left\{\mathbf{T}\left(t_{1 x}, t_{1 y}\right) \cdot \mathbf{P}\right\} \\
& =\left\{\mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot \mathbf{T}\left(t_{1 x}, t_{1 y}\right)\right\} \cdot \mathbf{P}
\end{aligned}
$$

$T\left(t_{2 x}, t_{2 y}\right) \cdot T\left(t_{1 x}, t_{1 y}\right)=\left[\begin{array}{ccc}1 & 0 & t_{2 x} \\ 0 & 1 & t_{2 y} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}1 & 0 & t_{1 x} \\ 0 & 1 & t_{1 y} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & t_{1 x}+t_{2 x} \\ 0 & 1 & t_{1 y}+t_{2 y} \\ 0 & 0 & 1\end{array}\right]=T\left(t_{1 x}+t_{2 x}, t_{1 y}+t_{2 y}\right)$

Composite Transformations

$$
\mathbf{R}(\theta) \cdot \mathbf{R}(\varphi)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]=
$$

$$
\left[\begin{array}{ccc}
\cos \theta \cos \varphi-\sin \theta \sin \varphi & -\cos \theta \sin \varphi-\sin \theta \cos \varphi & 0 \\
\sin \theta \cos \varphi+\cos \theta \sin \varphi & -\sin \theta \sin \varphi+\cos \theta \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta+\varphi) & -\sin (\theta+\varphi) & 0 \\
\sin (\theta+\varphi) & \cos (\theta+\varphi) & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{R}(\theta+\varphi)
$$

$$
\mathbf{S}\left(s_{2 x}, s_{2 y}\right) \cdot \mathbf{S}\left(s_{1 x}, s_{1 y}\right)=\left[\begin{array}{ccc}
s_{2 x} & 0 & 0 \\
0 & s_{2 y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s_{1 x} & 0 & 0 \\
0 & s_{1 y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{1 x} \cdot s_{2 x} & 0 & 0 \\
0 & s_{1 y} \cdot s_{2 y} & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{S}\left(s_{1 x} \cdot s_{2 x}, s_{1 y} \cdot s_{2 y}\right)
$$

Rotation around a pivot point

- Translate the object so that the pivot point moves to the origin
- Rotate around origin
- Translate the object so that the pivot point is back to its original position

$$
\begin{gathered}
\mathbf{T}\left(x_{r}, y_{r}\right) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}\left(-x_{r},-y_{r}\right)= \\
{\left[\begin{array}{ccc}
1 & 0 & x_{r} \\
0 & 1 & y_{r} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{r} \\
0 & 1 & -y_{r} \\
0 & 0 & 1
\end{array}\right]=} \\
{\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x_{r}(1-\cos \theta)+y_{r} \sin \theta \\
\sin \theta & \cos \theta & y_{r}(1-\cos \theta)-x_{r} \sin \theta \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Scaling with respect to a fixed point

- Translate to origin
- Scale
- Translate back

$$
\begin{gathered}
\mathbf{T}\left(x_{f}, y_{f}\right) \cdot \mathbf{S}\left(s_{x}, s_{y}\right) \cdot \mathbf{T}\left(-x_{f},-y_{f}\right)= \\
{\left[\begin{array}{ccc}
1 & 0 & x_{f} \\
0 & 1 & y_{f} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{f} \\
0 & 1 & -y_{f} \\
0 & 0 & 1
\end{array}\right]=} \\
{\left[\begin{array}{ccc}
s_{x} & 0 & x_{f}\left(1-s_{x}\right) \\
0 & s_{y} & y_{f}\left(1-s_{y}\right) \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Order of matrix compositions

- Matrix composition is not commutative. So, be careful when applying a sequence of transformations.

Other Transformations

. Reflection

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

. Shear: Deform the shape like shifted slices.

$$
x^{\prime}=x+\operatorname{sh}_{x} \cdot y \quad y^{\prime}=y
$$

$$
\left[\begin{array}{ccc}
1 & s h_{x} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Transformations Between the Coordinate Systems

- Between different systems: Polar coordinates to cartesian coordinates
- Between two cartesian coordinate systems. For example, relative coordinates or window to viewport transformation.

- How to transform from x, y to x^{\prime}, y^{\prime} ?
- Superimpose x^{\prime}, y^{\prime} to x, y
- Transformation:
- Translate so that (x_{0}, y_{0}) moves to $(0,0)$ of x, y
- Rotate x^{\prime} axis onto x axis
$R(-\theta) \cdot T\left(-x_{0,}-y_{0}\right)$

- Alternate method for rotation: Specify a vector \mathbf{V} for positive y^{\prime} axis: unit vector in the y^{\prime} direction :

$$
\mathbf{v}=\frac{\mathbf{V}}{|\mathbf{V}|}=\left(v_{x}, v_{y}\right)
$$

unit vector in the x^{\prime} direction, rotate \mathbf{v} clockwise 90°

$$
\mathbf{u}=\left(v_{y},-v_{x}\right)=\left(u_{x}, u_{y}\right)
$$

- Elements of any rotation matrix can be expressed as elements of a set of orthogonal unit vectors:

$$
\begin{array}{r}
\mathbf{R}=\left[\begin{array}{ccc}
u_{x} & u_{y} & 0 \\
v_{x} & v_{y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
v_{y} & -v_{x} & 0 \\
v_{x} & v_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \quad y \\
\mathbf{v}=\frac{\mathbf{P}-\mathbf{P}_{\mathbf{0}}}{\left|\mathbf{P}-\mathbf{P}_{\mathbf{0}}\right|} \underbrace{\mathbf{P}_{\mathbf{0}}}_{x}
\end{array}
$$

- Example:

$$
\begin{gathered}
\mathbf{P}_{0}=(2,1) \quad \mathbf{P}=(3.5,3) \\
\mathbf{v}=\frac{\mathbf{P}-\mathbf{P}_{\mathbf{0}}}{\left|\mathbf{P}-\mathbf{P}_{0}\right|}=\frac{(1.5,2)}{\sqrt{1.5^{2}+2^{2}}}=\left(\frac{1.5}{2.5}, \frac{2}{2.5}\right)=(0.6,0.8) \\
\mathbf{u}=(0.8,-0.6) \\
\mathbf{M}=\mathbf{R}(\mathbf{u}, \mathbf{v}) \cdot \mathbf{T}(-2,-1)= \\
{\left[\begin{array}{lll}
0.8 & -0.6 & 0 \\
0.6 & 0.8 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.8 & -0.6 & -1 \\
0.6 & 0.8 & -2 \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Let triangle T be defined as $\left[\begin{array}{lll}3 & 4 & 4 \\ 1 & 2 & 1 \\ \text { three column vectors: } & 1 & 1\end{array}\right]$

$$
\mathbf{M} \cdot T=\left[\begin{array}{lll}
0.8 & 1 & 1.6 \\
0.6 & 2 & 1.2 \\
1 & 1 & 1
\end{array}\right]
$$

Affine Transformations

- Coordinate transformations of the form:

$$
\begin{aligned}
& x^{\prime}=a_{x x} x+a_{x y} y+b_{x} \\
& y^{\prime}=a_{y x} x+a_{y y} y+b_{y}
\end{aligned}
$$

- Translation, rotation, scaling, reflection, shear. Any affine transformation can be expressed as the combination of these.
- Rotation, translation, reflection: preserve angles, lengths, parallel lines

3 DIMENSIONAL TRANSFORMATIONS

3D Transformations

- x, y, z coordinates. Usual notation: Right handed coordinate system
- Analogous to 2D we have 4 dimensions in homogenous coordinates.
- Basic transformations:
- Translation
- Rotation
- Scaling

Translation

. move the object to a relative position.

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=} {\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] } \\
& \mathbf{P}^{\prime}=\mathbf{T} \cdot \mathbf{P}
\end{aligned}
$$

Rotation

. Rotation arround the coordinate axes

x axis

y axis

z axis

Counterclockwise when looking along the positive half towards origin

Rotation around coordinate axes

- Arround x

$$
\mathbf{R}_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{P}^{\prime}=\mathbf{R}_{x}(\theta) \cdot \mathbf{P}
$$

- Arround y

$$
\mathbf{R}_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{P}^{\prime}=\mathbf{R}_{y}(\theta) \cdot \mathbf{P}
$$

- Arround z

$$
\mathbf{R}_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{P}^{\prime}=\mathbf{R}_{z}(\theta) \cdot \mathbf{P}
$$

Rotation Arround a Parallel Axis

- Rotating the object around a line parallel to one of the axes: Translate to axis, rotate, translate back.

$$
\mathbf{P}^{\prime}=\mathbf{T}\left(0, y_{p}, z_{p}\right) \cdot \mathbf{R}_{x}(\theta) \cdot \mathbf{T}\left(0,-y_{p},-z_{p}\right) \cdot \mathbf{P}
$$

Translate
Rotate
Translate back

Figure from the textbook

(a)

Original Position of Object

(c)

$$
\text { Rotate Object Through Angle } \theta
$$

(d)

Translate Rotation Axis to Original Position

Figure 5-41
Sequence of transformations for rotating an object about an axis that is parallel to the x axis.

Rotation Around an Arbitrary Axis

- Translate the object so that the rotation axis passes though the origin
- Rotate the object so that the rotation axis is aligned with one of the coordinate axes

- Make the specified rotation
- Reverse the axis rotation
- Translate back

Rotation Around an Arbitrary Axis

Step 4
Rotate the Axis to its Original Orientation

Step 5
Translate the
Rotation Axis to its Original Position

Rotation Around an Arbitrary Axis

$$
\mathbf{V}=\mathbf{P}_{2}-\mathbf{P}_{1}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
$$

\mathbf{u} is the unit vector along $\mathbf{V}: \quad \mathbf{u}=\frac{\mathbf{V}}{|\mathbf{V}|}=(a, b, c)$
First step: Translate \mathbf{P}_{1} to origin:

$$
\mathbf{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{1} \\
0 & 1 & 0 & -y_{1} \\
0 & 0 & 1 & -z_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Next step: Align u with the z axis
we need two rotations: rotate around x axis to get \mathbf{u} onto the $x z$ plane, rotate around y axis to get u aligned with z axis.

Rotation Around an Arbitrary Axis

Align u with the z axis

1) rotate around x axis to get \mathbf{u} into the $x z$ plane,
2) rotate around y axis to get \mathbf{u} aligned with the z axis

Dot product and Cross Product

- v dot $u=v x * u x+v y * u y+v z * u z$. That equals also to $|v|^{*}|u|^{*} \cos (a)$ if a is the angle between v and u vectors. Dot product is zero if vectors are perpendicular.
$v x u$ is a vector that is perpendicular to both vectors you multiply. Its length is
$|v|^{*}|u|^{*} \sin (a)$, that is an area of parallelogram built on them. If v and u are parallel then the product is the null vector.

Rotation Around an Arbitrary Axis

Align u with the z axis

1) rotate around x axis to get \mathbf{u} into the $x z$ plane,
2) rotate around y axis to get \mathbf{u} aligned with the z axis

$$
\mathbf{u}^{z}=(0, b, c)
$$

Projection of \mathbf{u} on $y z$ plane

We need cosine and sine of α for rotation

$$
\begin{aligned}
& \cos \alpha=\frac{\mathbf{u}^{\prime} \cdot \mathbf{u}_{z}}{\left|\mathbf{u}^{\prime}\right|\left|\mathbf{u}_{z}\right|}=\frac{c}{d} \quad d=\sqrt{b^{2}+c^{2}} \\
& \mathbf{u}^{\prime} \times \mathbf{u}_{z}=\mathbf{u}_{x}\left|\mathbf{u}^{\prime}\right|\left|\mathbf{u}_{z}\right| \sin \alpha=\mathbf{u}_{x} b
\end{aligned}
$$

$b=d \sin \alpha$
$\cos \alpha=\frac{c}{d} \quad \sin \alpha=\frac{b}{d}$

$$
\mathbf{R}_{x}(\alpha)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{c}{d} & -\frac{b}{d} & 0 \\
0 & \frac{b}{d} & \frac{c}{d} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation Around an Arbitrary Axis

Align u with the z axis

1) rotate around x axis to get \mathbf{u} into the $x z$ plane,
2) rotate around y axis to get \mathbf{u} aligned with the z axis

$$
\begin{aligned}
& \cos \beta=\frac{u^{\prime \prime} \cdot u_{z}}{\left|u^{\prime \prime}\right| \cdot\left|u_{z}\right|}=d \\
& \mathbf{u}^{\prime \prime} \times \mathbf{u}_{z}=\mathbf{u}_{y}\left|\mathbf{u}^{\prime \prime}\right|\left|\mathbf{u}_{z}\right| \sin \beta=\mathbf{u}_{y} \cdot(-a) \\
& \cos \beta=d \quad \sin \beta=-a \\
& \mathbf{R}_{y}(\beta)=\left[\begin{array}{llcl}
d & 0 & -a & 0 \\
0 & 1 & 0 & 0 \\
a & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$\mathbf{R}(\theta)=\mathbf{T}\left(x_{1}, y_{1}, z_{1}\right) \cdot \mathbf{R}_{x}(-\alpha) \cdot \mathbf{R}_{y}(-\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T}\left(-x_{1},-y_{1},-z_{1}\right)$

Rotation, ... Alternative Method

Any rotation around origin can be represented by 3 orthogonal unit vectors:

$$
\mathbf{R}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This matrix can be thought of as rotating the unit $r_{1^{*}}, r_{2^{*}}$, and $r_{3^{*}}$ vectors onto x, y, and z axes.

So, to align a given rotation axis \mathbf{u} onto the z axis, we can define an (orthogonal) coordinate system and form this \mathbf{R} matrix

Define a new coordinate system ($\mathbf{u}_{x}^{\prime}, \mathbf{u}_{y}^{\prime}, \mathbf{u}_{z}^{\prime}$)

$$
\begin{aligned}
\mathbf{u}_{z}^{\prime} & =\mathbf{u} \\
\mathbf{u}_{y}^{\prime} & \left.=\frac{\mathbf{u} \times \mathbf{u}_{x}}{\left|\mathbf{u} \times \mathbf{u}_{x}\right|} \right\rvert\, \\
\mathbf{u}_{x}^{\prime} & =\mathbf{u}_{y}^{\prime} \times \mathbf{u}_{z}^{\prime}
\end{aligned}
$$

Rotation, ... Alternative Method

$$
\begin{aligned}
& \mathbf{u}_{z}^{\prime}=\mathbf{u}=(a, b, c) \\
& \mathbf{u}_{y}^{\prime}=\frac{\mathbf{u} \times \mathbf{u}_{x}}{\left|\mathbf{u} \times \mathbf{u}_{x}\right|}=\frac{(a, b, c) \times(1,0,0)}{\left|\mathbf{u} \times \mathbf{u}_{x}\right|}=\frac{(0, c,-b)}{\sqrt{b^{2}+c^{2}}}=(0, c / d,-b / d) \\
& \mathbf{u}_{x}^{\prime}=\mathbf{u}_{y}^{\prime} \times \mathbf{u}_{z}^{\prime}=(0, c / d,-b / d) \times(a, b, c)=(d,-a \cdot b / d,-a \cdot c / d) \\
& \mathbf{R}=\left[\begin{array}{llll}
d & \frac{-a \cdot b}{d} & \frac{-a \cdot c}{d} & 0 \\
0 & \frac{c}{d} & \frac{-b}{d} & 0 \\
a & b & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{c}
\text { Check if this is equal to } \\
R_{y}(\beta) \cdot R_{x}(\alpha)
\end{array}
\end{aligned}
$$

Scaling

- Change the coordinates of the object by scaling factors.

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
\mathbf{P}^{\prime}=\mathbf{S} \cdot \mathbf{P}
\end{gathered}
$$

Scaling with respect to a Fixed Point

- Translate to origin, scale, translate back

$$
\mathbf{P}^{\prime}=\mathbf{T}\left(x_{f}, y_{f}, z_{f}\right) \cdot \mathbf{S} \cdot \mathbf{T}\left(-x_{f},-y_{f},-z_{f}\right) \cdot \mathbf{P}
$$

Translate
Scale
Translate back

Scaling with respect to a Fixed Point

$$
\mathbf{T}\left(x_{f}, y_{f}, z_{f}\right) \cdot \mathbf{S} \cdot \mathbf{T}\left(-x_{f},-y_{f},-z_{f}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & x_{f} \\
0 & 1 & 0 & y_{f} \\
0 & 0 & 1 & z_{f} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & x_{f} \\
0 & 1 & 0 & y_{f} \\
0 & 0 & 1 & z_{f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
1 & 0 & 0 & x_{f} \\
0 & 1 & 0 & y_{f} \\
0 & 0 & 1 & z_{f} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
s_{x} & 0 & 0 & -s_{x} x_{f} \\
0 & s_{y} & 0 & -s_{y} y_{f} \\
0 & 0 & s_{z} & -s_{z} z_{f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\mathbf{T}\left(x_{f}, y_{f}, z_{f}\right) \cdot \mathbf{S} \cdot \mathbf{T}\left(-x_{f},-y_{f},-z_{f}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & x_{f}\left(1-s_{x}\right) \\
0 & s_{y} & 0 & y_{f}\left(1-s_{y}\right) \\
0 & 0 & s_{z} & z_{f}\left(1-s_{z}\right) \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection

- Reflection over planes, lines or points

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Shear

- Deform the shape depending on another dimension

$$
\begin{aligned}
& S H_{z}=\left[\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad x \text { and } y \text { value depends on } z \text { value of the shape } \\
& S H_{x}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
a & 1 & 0 & 0 \\
b & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad y \text { and } z \text { value depends on } x \text { value of the shape }
\end{aligned}
$$

OpenGL Geometric-Transformation Functions

- In the core OpenGL library,
- a separate function is available for each basic transformation (translate, rotate, scale)
- all transformations are specified in 3D
- Parameters
- Translation: translation amount in x, y, z axes
- Rotation: angle, orientation of the rotation axis that passes through the origin
- Scaling: scaling factors for three coordinates

Basic OpenGL Transformations

- gITranslate* (tx, ty, tz);
- For 2D applications set tz $=0$
- glRotate* (theta, vx, vy, vz);
- theta in degrees
- The rotation axis is defined by the vector ($v x, v y, v z$), i.e., $P 0=(0,0,0) P 1=(v x, v y, v z)$
- glScale* (sx, sy, sz);
- Use negative values to get reflection transformation

OpenGL Matrix Operations

- glMatrixMode (GL_MODELVIEW);
- modelview mode to tell OpenGL that we will be specifying geometric transformations. The command simply says that the current matrix operations will be applied on the 4 by 4 modelview matrix.
- the other mode is the projection mode, which specifies the matrix that is used of projection transformations (i.e., how a scene is projected onto the screen)
- There are also color and texture modes that we will discuss later

OpenGL Matrix Operations

- Once you are in the modelview mode, a call to a transformation routine generates a matrix that is multiplied by the current matrix for that mode
- Whatever object defined is multiplied with the current matrix
- The contents of the current matrix can also be manipulated explicitly
- glLoadI dentity();
- glLoadMatrix* (elements16);
where elements16 is a single subscripted array that specifies a matrix in column-major order

OpenGL Matrix Operations

- Example:
for (int k=0; k<16; k++)
elements16[k]=(float) k; glLoadMatrixf(elements16);
will produce the matrix

$$
\mathbf{M}=\left[\begin{array}{cccc}
0.0 & 4.0 & 8.0 & 12.0 \\
1.0 & 5.0 & 9.0 & 13.0 \\
2.0 & 6.0 & 10.0 & 14.0 \\
3.0 & 7.0 & 11.0 & 15.0
\end{array}\right]
$$

OpenGL Matrix composition

- gIMultMatrix* (otherElements16)
- The current matrix is postmultiplied with the matrix specified in otherElements16

$$
\mathbf{M}_{\text {curr }}=\mathbf{M}_{\text {curr }} \cdot \mathbf{M}^{\prime}
$$

what does this imply?
In a sequence of transformation commands, the last one specified in the code will be the first transformation to be applied.

OpenGL Matrix Stacks

- OpenGL maintains a matrix stack for all the four matrix modes
- When we apply geometric transformations using OpenGL functions, the 4 by 4 matrix at the top of the matrix stack is modified
- The top is also called the current matrix
- If we want to create multiple transformation sequences and save the composition results we can make use of the OpenGL matrix stack

OpenGL Matrix Stacks

- Initially, there is only the identity matrix in the stack
- To find out how many matrices are currently in the stack:
- glGetl ntegerv(GL_MODELVIEW_STACK_DEPTH,numMats)
- glPushMatrix ();
- The current matrix is copied and stored in the second stack position
- glPopMatrix ();
- Destroys the matrix at the top and the second matrix in the stack becomes the current matrix

