
Geometric Geometric
TransformationsTransformations

Ceng 477 Introduction to Computer Graphics
Fall 2007

Computer Engineering
METU

2D Geometric 2D Geometric
TransformationsTransformations

Basic Geometric Transformations

● Geometric transformations are used to transform the
objects and the camera in a scene (for animation or
modelling) and are also used to transform World
Coordinates to View Coordinates

● Given the shape, transform all the points of the
shape? Transform the points and/or vectors describing
it.

● For example:
Polygon: corner points
Circle, Ellipse: center point(s), point at angle 0

● Some transformations preserves some of the
attributes like sizes, angles, ratios of the shape.

Translation

● Simply move the object to a relative position.

TPP

PTP

+=

y'
x'

=
t
t

=
y
x

=

t+y=y't+x=x'

y

x

yx

'

' ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

T

P

P'

Rotation

● A rotation is defined by a rotation axis and a
rotation angle.

● For 2D rotation, the parameters are rotation
angle (θ) and the rotation point (xr ,yr).

● We reposition the object in a circular path
arround the rotation point (pivot point)

θ

xr

yr

Rotation

● When (xr ,yr)=(0,0) we have

r P

P'

θφθφθφ
θφθφθφ

cossinsincos)sin(
sinsincoscos)cos(

rrry
rrrx

+=+=′
−=+=′

φ
φ

sin
cos

ry
rx

=
=The original coordinates are:

θθ
θθ

cossin
sincos

yxy
yxx

+=′
−=′Substituting them in the

first equation we get:

In the matrix form we have:

where

PRP ⋅=′

⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

cossin
sincos

R

Rotation

● Rotation around an arbitrary point (xr ,yr)

● This equations can be written as matrix
operations (we will see when we discuss
homogeneous coordinates).

r

P

P'

θθ
θθ

cos)(sin)(
sin)(cos)(

rrr

rrr

yyxxyy
yyxxxx

−+−+=′
−−−+=′

(xr ,yr)

Scaling

● Change the size of an object. Input: scaling
factors (sx ,sy)

PSP

S

' ⋅

⎥
⎦

⎤
⎢
⎣

⎡

=

s
s

=

ys=y'xs=x'

y

x

yx

0
0

PP'

non-uniform vs.
uniform scaling

Homogenous Coordinates
● All transformations can be represented by matrix

operations.

● Translation is additive, rotation and scaling is
multiplicative (+ additive if you rotate around an
arbitrary point or scale around a fixed point); making
the operations complicated.

● Adding another dimension to transformations make
translation also representable by multiplication.
Cartesian coordinates vs homogenous coordinates.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

h
yh
xh

=
h
y
x

=P
h
y=y

h
x=x h

h
hh

● Many points in homogenous coordinates can
represent the same point in Cartesian
coordinates.

● In homogenous coordinates, all
transformations can be written as matrix
multiplications.

Transformations in Homogenous C.

● Translation

● Rotation

● Scaling

()

() Pt,tT=P

t
t

=t,tT

yx
'

y

x

yx

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
10
01

()

() PθR=P

θθ
θθ

=θR

' ⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
0cossin
0sincos

()

() Ps,sS=P

s
s

=s,sS

yx

y

x

yx

⋅′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
00
00

Composite Transformations

● Application of a sequence of transformations
to a point:

PM
PMMP 12

⋅=
⋅⋅=′

Composite Transformations

● First: composition of similar type
transformations

● If we apply to successive translations to a
point:

() () ()yyxxyy

xx

y

x

y

x

yxyx t+t,t+tT=tt
tt

=t
t

t
t

=t,tTt,tT 212121

21

1

1

2

2

1122

100
10
01

100
10
01

100
10
01

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

PTT

PTTP

⋅⋅=

⋅⋅=′

)},(),({

}),({),(

1122

1122

yxyx

yxyx

tttt

tttt

() () ()yyxxyy

xx

y

x

y

x

yxyx ss,ss=ss
ss

=s
s

s
s

=s,ss,s 212121

21

1

1

2

2

1122

100
00
00

100
00
00

100
00
00

⋅⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅ SSS

Composite Transformations

() ()

()φ+θ=φ+θφ+θ
φ+θφ+θ

=φθ+φθφθ+φθ
φθφθφθφθ

=θθ
θθ

=φθ

R

RR

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
⋅

100
0)cos()sin(
0)sin()cos(

100
0coscossinsinsincoscossin
0cossinsincossinsincoscos

100
0cossin
0sincos

100
0cossin
0sincos

ϕϕ
ϕϕ

Rotation around a pivot point
– Translate the object so that the

pivot point moves to the origin

– Rotate around origin

– Translate the object so that the
pivot point is back to its original
position

() () ()

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−⋅⋅

100
sincos1cossin
sincos1sincos

100
10
01

100
0cossin
0sincos

100
10
01

θxθyθθ
θy+θxθθ

=y
x

θθ
θθ

y
x

=y,xθy,x

rr

rr

r

r

r

r

rrrr TRT

()rr y,x −−T

()θR

()rr y,xT

Scaling with respect to a fixed point

– Translate to origin

– Scale

– Translate back

() () ()

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−⋅⋅

100
10
10

100
10
01

100
00
00

100
10
01

yfy

xfx

f

f

y

x

f

f

ffyxff

sys
sxs

=y
x

s
s

y
x

=y,xs,sy,x TST

()ff y,x −−T

()yx s,sS

()ff y,xT

Order of matrix compositions

● Matrix composition is not commutative. So,
be careful when applying a sequence of
transformations.

pivot same pivot

Other Transformations

● Reflection

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

100

010

001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

100

010

001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

100

010

001

● Shear: Deform the shape like shifted slices.

(1,1)
(3,1)

(2,1)

x ' x shx y y ' y

1 shx 0
0 1 0
0 0 1

(0,1)

Transformations Between the
Coordinate Systems

● Between different systems: Polar coordinates
to cartesian coordinates

● Between two cartesian coordinate systems.
For example, relative coordinates or window
to viewport transformation.

● How to transform from x,y
to x',y' ?

● Superimpose x',y' to x,y

● Transformation:

– Translate so that (x0 ,y0)
moves to (0,0) of x,y

– Rotate x' axis onto x axis

xx

y

y'

x'

x0

y0

() ()00, yxTθR −−⋅−

xx

y

y'
x'

● Alternate method for rotation:
Specify a vector V for positive
y' axis:

xx

y

y'

x'

V
()yx v,v==

y'

V
Vv

:direction in ther unit vecto

() ()yxxy u,u=v,v=
x'

−u
v o90 clockwise rotate direction, in ther unit vecto

● Elements of any rotation matrix can be expressed as
elements of a set of orthogonal unit vectors:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
0
0

100
0
0

yx

xy

yx

yx

vv
vv

=vv
uu

=R

xx

y
y'

x'

P

0P

| |0

0

PP
PPv

−
−=

● Example:

x
x'

y
y'

P

0P

() ()

| |
() ()

()

() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

−−⋅

−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

111

1.220.6

1.610.8
111

121

443
100

20.80.6

10.60.8

100

110

201

100

00.80.6

00.60.8
12,

0.60.8,

0.6,0.8
2.5
2

2.5
1.5

21.5
1.5,2

3.5,32,1

22
0

0

=T

=
=,=

=,=
+

==

==

M

TvuRM

=u
PP
PPv

PP

0

TM T

Let triangle T be defined as
three column vectors:

Affine Transformations

● Coordinate transformations of the form:

● Translation, rotation, scaling, reflection, shear. Any
affine transformation can be expressed as the
combination of these.

● Rotation, translation, reflection:
preserve angles, lengths, parallel lines

yyyyx

xxyxx

b+ya+xa=y'

b+ya+xa=x'

3 DIMENSIONAL3 DIMENSIONAL
TRANSFORMATIONSTRANSFORMATIONS

3D Transformations

● x,y,z coordinates. Usual notation:
Right handed coordinate system

● Analogous to 2D we have 4 dimensions
in homogenous coordinates.

● Basic transformations:

– Translation

– Rotation

– Scaling

x

y

z

z

x

y

y

z

x

Translation

● move the object to a relative position.

z

y

x

z

y

x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′

11000
100
010
001

1
z
y
x

t
t
t

z
y
x

z

y

x

PTP ⋅=′

P

P′

Rotation

● Rotation arround the coordinate axes

x axis y axis z axis

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

Counterclockwise when looking along
the positive half towards origin

Rotation around coordinate axes

● Arround x

● Arround y

● Arround z

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0cossin0
0sincos0
0001

)(
θθ
θθ

θxR PRP ⋅=′)(θx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00cossin
00sincos

)(
θθ
θθ

θzR PRP ⋅=′)(θz

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000
0cos0sin
0010
0sin0cos

)(
θθ

θθ

θyR PRP ⋅=′)(θy

Rotation Arround a Parallel Axis

● Rotating the object around a line parallel to one of the
axes: Translate to axis, rotate, translate back.

z

y

x

z

y

x

z

y

x
z

y

x

Translate Rotate Translate back

PTRTP ⋅−−⋅⋅=′),,0()(),,0(ppxpp zyzy θ

Figure from the textbook

Rotation Around an Arbitrary Axis

● Translate the object so that the
rotation axis passes though the
origin

● Rotate the object so that the
rotation axis is aligned with one of
the coordinate axes

● Make the specified rotation

● Reverse the axis rotation

● Translate back

z

y

x

Rotation Around an Arbitrary Axis

Rotation Around an Arbitrary Axis

),,(12121212 zzyyxx −−−=−= PPV
),,(cba==

V
Vuu is the unit vector along V:

First step: Translate P1 to origin:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

1000
100
010
001

1

1

1

z
y
x

T

Next step: Align u with the z axis
we need two rotations: rotate around x axis to get u
onto the xz plane, rotate around y axis to get u aligned
with z axis.

Rotation Around an Arbitrary Axis

z

x

u

Align u with the z axis
1) rotate around x axis to get u into the xz plane,
2) rotate around y axis to get u aligned with the z axis

y

α

z

x
u

y

β
z

x

uu'

α
uz

y

Dot product and Cross Product

● v dot u = vx * ux + vy * uy + vz * uz. That
equals also to |v|*|u|*cos(a) if a is the angle
between v and u vectors. Dot product is zero
if vectors are perpendicular.

v x u is a vector that is perpendicular to both
vectors you multiply. Its length is
|v|*|u|*sin(a), that is an area of
parallelogram built on them. If v and u are
parallel then the product is the null vector.

Rotation Around an Arbitrary Axis

z

x

uu'

α

Align u with the z axis
1) rotate around x axis to get u into the xz plane,
2) rotate around y axis to get u aligned with the z axis

uz

We need cosine and sine of α for rotation

),,0(cb=′u

22 cos cbd
d
c

z

z +==
′
⋅′

=
uu
uuα

bxzxz uuuuuu =′=×′ αsin

αsindb =

d
b

d
c

== αα sin cos

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000

00

00
0001

)(

d
c

d
b

d
b

d
c

x αRProjection of u on
yz plane

Rotation Around an Arbitrary Axis

z

x

u

u''= (a,0,d)

Align u with the z axis
1) rotate around x axis to get u into the xz plane,
2) rotate around y axis to get u aligned with the z axis

d
uu
uu

z

z =
⋅′′
⋅′′

=βcos

)(sin ayzyz −⋅=′′=×′′ uuuuuu β

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

−==

1000
00
0010
00

)(

sin cos

da

ad
ad

y β

ββ

R

),,()()()()()(),,()(111111 zyxzyx xyzyx −−−⋅⋅⋅⋅−⋅−⋅= TRRRRRTR αβθβαθ

β

Rotation, ... Alternative Method
Any rotation around origin can be represented by
3 orthogonal unit vectors:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0
0
0

333231

232221

131211

rrr
rrr
rrr

R

Define a new coordinate system
with the given rotation axis u using:

),,(zyx uuu ′′′

This matrix can be thought of as
rotating the unit r1* , r2* , and r3* vectors
onto x, y, and z axes.

So, to align a given rotation axis u onto the z axis,
we can define an (orthogonal) coordinate system and form this R matrix

zyx

x

x
y

z

uuu
uu
uuu

uu

′×′=′

×
×

=′

=′

Rotation, ... Alternative Method

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⋅−⋅−

=

⋅−⋅−=×−=′×′=′

−=
+

−
=

×
×

=
×
×

=′

==′

1000
0

00

0

)/,/,(),,()/,/,0(

)/,/,0(),,0()0,0,1(),,(
),,(

22

cba
d
b

d
c

d
ca

d
bad

dcadbadcbadbdc

dbdc
cb
bccba

cba

zyx

xx

x
y

z

R

uuu
uuuu

uuu

uu

Check if this is equal to

)()(αβ xy RR ⋅

Scaling

● Change the coordinates of the object by scaling
factors.

x '
y '
z '
1

sx 0 0 0
0 s y 0 0
0 0 sz 0
0 0 0 1

x
y
z
1

z

y

x

z

y

x
PSP ⋅=′

P

P′

Scaling with respect to a Fixed Point

● Translate to origin, scale, translate back

z

y

x

z

y x

z

y

x
z

y

x

Translate Scale Translate back

PTSTP ⋅−−−⋅⋅=′),,(),,(ffffff zyxzyx

Scaling with respect to a Fixed Point

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=−−−⋅⋅=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−−−⋅⋅

1000
)1(00
)1(00
)1(00

),,(),,(

1000
00

00
00

1000
100
010
001

1000
100
010
001

1000
000
000
000

1000
100
010
001

),,(),,(

zfz

yfy

xfx

ffffff

fzz

fyy

fxx

f

f

f

f

f

f

z

y

x

f

f

f

ffffff

szs
sys
sxs

zyxzyx

zss
yss
xss

z
y
x

z
y
x

s
s

s

z
y
x

zyxzyx

TST

TST

Reflection

● Reflection over planes, lines or points

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

z

y

x

z

y

x

z

y

x

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

z

y

x

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Shear

● Deform the shape depending on another dimension

SH z

1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1

x and y value depends on z value of the shape

SH x

1 0 0 0
a 1 0 0
b 0 1 0
0 0 0 1

y and z value depends on x value of the shape

OpenGL Geometric-Transformation
Functions

● In the core OpenGL library,

– a separate function is available for each basic
transformation (translate, rotate, scale)

– all transformations are specified in 3D

● Parameters

– Translation: translation amount in x, y, z axes

– Rotation: angle, orientation of the rotation axis
that passes through the origin

– Scaling: scaling factors for three coordinates

Basic OpenGL Transformations

● glTranslate* (tx, ty, tz);

– For 2D applications set tz = 0

● glRotate* (theta, vx, vy, vz);

– theta in degrees

– The rotation axis is defined by the vector
(vx,vy,vz), i.e., P0 = (0,0,0) P1 = (vx,vy,vz)

● glScale* (sx, sy, sz);

– Use negative values to get reflection
transformation

OpenGL Matrix Operations

● glMatrixMode (GL_MODELVIEW);

– modelview mode to tell OpenGL that we will
be specifying geometric transformations. The
command simply says that the current matrix
operations will be applied on the 4 by 4
modelview matrix.

– the other mode is the projection mode, which
specifies the matrix that is used of projection
transformations (i.e., how a scene is
projected onto the screen)

– There are also color and texture modes that
we will discuss later

OpenGL Matrix Operations

● Once you are in the modelview mode, a call to a
transformation routine generates a matrix that is
multiplied by the current matrix for that mode

● Whatever object defined is multiplied with the
current matrix

● The contents of the current matrix can also be
manipulated explicitly

– glLoadIdentity();

– glLoadMatrix* (elements16);

where elements16 is a single subscripted array that
specifies a matrix in column-major order

OpenGL Matrix Operations

● Example:

for (int k=0; k<16;k++)

elements16[k]=(float)k;

glLoadMatrixf(elements16);

will produce the matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.150.110.70.3
0.140.100.60.2
0.130.90.50.1
0.120.80.40.0

M

OpenGL Matrix composition

● glMultMatrix* (otherElements16)

– The current matrix is postmultiplied with
the matrix specified in otherElements16

what does this imply?

MMM ′⋅= currcurr

In a sequence of transformation commands, the last
one specified in the code will be the first
transformation to be applied.

OpenGL Matrix Stacks

● OpenGL maintains a matrix stack for all the
four matrix modes

● When we apply geometric transformations
using OpenGL functions, the 4 by 4 matrix at
the top of the matrix stack is modified

● The top is also called the current matrix

● If we want to create multiple transformation
sequences and save the composition results
we can make use of the OpenGL matrix stack

OpenGL Matrix Stacks

● Initially, there is only the identity matrix in
the stack

● To find out how many matrices are currently
in the stack:
– glGetIntegerv(GL_MODELVIEW_STACK_DEPTH,numMats)

● glPushMatrix ();

– The current matrix is copied and stored in the second
stack position

● glPopMatrix ();

– Destroys the matrix at the top and the second matrix in
the stack becomes the current matrix

	Geometric Transformations
	2D Geometric Transformations
	Basic Geometric Transformations
	Translation
	Rotation
	Rotation
	Rotation
	Scaling
	Homogenous Coordinates
	Slide Number 10
	 Transformations in Homogenous C.
	Composite Transformations
	Composite Transformations
	Slide Number 14
	Rotation around a pivot point
	Scaling with respect to a fixed point
	Order of matrix compositions
	Other Transformations
	Slide Number 19
	Transformations Between the Coordinate Systems
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Affine Transformations
	3 DIMENSIONAL�TRANSFORMATIONS
	3D Transformations
	Translation
	Rotation
	Rotation around coordinate axes
	Rotation Arround a Parallel Axis
	Figure from the textbook
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Dot product and Cross Product
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Rotation, ... Alternative Method
	Slide Number 41
	Scaling
	Scaling with respect to a Fixed Point
	Scaling with respect to a Fixed Point
	Reflection
	Shear
	OpenGL Geometric-Transformation Functions
	Basic OpenGL Transformations
	OpenGL Matrix Operations
	OpenGL Matrix Operations
	OpenGL Matrix Operations
	OpenGL Matrix composition
	OpenGL Matrix Stacks
	OpenGL Matrix Stacks

