Geometric
Transformations

Ceng 477 Introduction to Computer Graphics
Fall 2007
Computer Engineering
METU

2D Geometric
Transformations

Basic Geometric Transformations

Geometric transformations are used to transform the
objects and the camera in a scene (for animation or
modelling) and are also used to transform World
Coordinates to View Coordinates

Given the shape, transform all the points of the
shape? Transform the points and/or vectors describing
It.

For example:

Polygon: corner points
Circle, Ellipse: center point(s), point at angle O

Some transformations preserves some of the
attributes like sizes, angles, ratios of the shape.

Translation

. Simply move the object to a relative position.

x'=x+t, y'=yti, 4/’

Rotation

. A rotation iIs defined by a rotation axis and a
rotation angle.

. For 2D rotation, the parameters are rotation
angle () and the rotation point (x,y,).

. We reposition the object in a circular path
arround the rotation point (pivot point)

A

Rotation

. When (x,y.)=(0,0) we have t
x'=rcos(¢+6)=rcosgcosf—rsingsinf % o)
y' =rsin(¢+60)=rcosgsinf+rsin¢gcosd)\tb/. .
The original coordinates are: *=7¢cos¢
y=rsing

Substituting them in the x'=xcosd—ysinf
first equation we get: y' =xsin@+ ycosé

In the matrix form we have: P'=R-P

cosd —siné
where R=|
Lm 6 cosd }

Rotation

. Rotation around an arbitrary poiQt (x,y)

x'=x +(x—x)cosd—(y—y,)sinf

y =y +(x—x)smO+(y—y.)cosl (X,)

. This equations can be written as matrix
operations (we will see when we discuss
homogeneous coordinates).

Scaling

. Change the size of an object. Input: scaling
factors (s,s,)

/

- [—
x'=xs, y'=ys,

o

non-uniform vs.
uniform scaling

Homogenous Coordinates

. All transformations can be represented by matrix

operations.

Translation is additive, rotation and scaling is
multiplicative (+ additive if you rotate around an
arbitrary point or scale around a fixed point); making
the operations complicated.

. Adding another dimension to transformations make

translation also representable by multiplication.
Cartesian coordinates vs homogenous coordinates.

x, | [h-x]
_ Xy _ Vi _ _
x=-"= =2 P= =\ h-
’ Y ’)];h hy

. Many points in homogenous coordinates can
represent the same point in Cartesian
coordinates.

. In homogenous coordinates, all
transformations can be written as matrix

multiplications.

Transformations in Homogenous C.

. Translation L0z
T(t,t,)=|0 1 1
0 0 1
P = T(tx,ty)-P
. Rotation (cosd —sind O]
R(H)= sind cosfd O
0 0 1
P =R(6)-P
. Scaling 0 0]
S(S Sy): 0 S, 0
0 0 1

Composite Transformations

. Application of a sequence of transformations
to a point:

P'=M, M, -P
-M-P

Composite Transformations

. First: composition of similar type

transformations

. If we apply to successive translations to a

point:

:T(tzxa Zy) {T(tIX’tly) P}

:{T(t2x9 Zy) T(t1x9 ly)} P

1 0 ¢,
T(th’tzy)'T(tlx’tly): 0 1 ¢
0 O

1]

2y.

| |
o O =

S = O

Zle] I

L,

1_ L

- T(tlx Thot, +t2y)

Composite Transformations

(cosd —sinfd 0] [cosp —sing O]
R(0)-R(p)=|sind cosd 0| |sing cosp O0|=
0 0 1| O 0 1]
[cosOcosg —sinfsing —cosfsing —sinfcosp 0| [cos(@+¢) —sin(@+¢) O
sinfcosp +cosfsing —sinfsing +cosfcosp 0 |=|sin(@+¢) cos(@+¢) O0|= R(@ + qo)
0 0 1 0 0 1

S(SZX,SZy)'S(Slx,Sly): 0 s, 010 S, 0= 0 S1, * Sy, 0 :S(Slx'Szx,Sly'Szy)

Rotation around a pivot point

- Translate the object so that the
pivot point moves to the origin

- Rotate around origin

- Translate the object so that the
pivot point is back to its original
position

T(s,.3,) RO) T x,3,)-

0 x

r

1
0O 1 y. [

0 0 1

[cos6
siné
0

[cos®
siné
0

—sind
cosf
0

—sinf 0|
cosfd O |-

0 1

x,(1-cosf)+ y sinf |

y.(1—-cosf
1

)

10
0 1
0 0

—x,sinf

— X

r

—V

1

Scaling with respect to a fixed point

- Translate to origin

- Scale

- Translate back

A

T(‘ XpomV f)

Order of matrix compositions

. Matrix composition iIs not commutative. So,
be careful when applying a sequence of
transformations.

1vot .
\{ ﬁne pivot
Final ~ Final

Position Position

—_— —

A

Other Transformations

. Reflection

1 0

0 0

0

0 -1 0
1

. Shear: Deform the shape like shifted slices.

A

Q@ ofup e
>

3.1)
>

Transformations Between the
Coordinate Systems

. Between different systems: Polar coordinates
to cartesian coordinates

. Between two cartesian coordinate systems.
For example, relative coordinates or window

to viewport transforrpation.

1l

How to transform from X,y N
to x",y' ? Y

Superimpose x',y' to X,y

Transformation: Yo
- Translate so that (X,,Y,) "
moves to (0,0) of x,y t *
Y

- Rotate x' axis onto x axis

R(—@)-T(— Xo, _J’o)

Alternate method for rotation: Y 1
Specify a vector V for positive
y'axis:

unit vector in the y'direction :

V
VZMZ(vx,vy)

unit vector in the x'direction, rotate v clockwise 90°

u=(v,v)= o)

Elements of any rotation matrix can be expressed as
elements of a set of orthogonal unit vectors:

u, u, 0 v, —v. 0
R=|v., v, 0|=|v, v, 0 V4 |
0 0 1] [0 O 1 AP
X'
L_P-P, o

. Example:
P,=(2,1) P=(3.5,3)

P-P 1.5,2 15 2
' \P—PZ\: \/1(,5;—+)222(2.5’2.5j:(0'6’0‘8)
u=1(0.8,-0.6)
M=R(u,v) T(-2,-1)=
(0.8 —-06 0|1 0 —-2]=[08 —-06 -1
06 08 0[]0 1 -1 06 08 -2
0 0 1o o1] o o0 1

Let triangle T be defined as
three column vectors:

3 4
1 2
11

1.6
1.2

M-T=[08 1
0.6 2

4
1
1

Affine Transformations

Coordinate transformations of the form:

x'=a,xta,y+b

Translation, rotation, scaling, reflection, shear. Any

affine transformation can be expressed as the
combination of these.

Rotation, translation, reflection:
preserve angles, lengths, parallel lines

3 DIMENSIONAL
TRANSFORMATIONS

3D Transformations

X,Y,z coordinates. Usual notation:
Right handed coordinate system

Analogous to 2D we have 4 dimensions
IN homogenous coordinates.

. . X,
Basic transformations:

-~ Translation 1y

- Rotation

— Scaling .

Translation

. move the object to a relative position.

x| [1 0 0 ¢ |[x ’ >
Y| |01 0 ¢ ||y .
21710 0 1 t ||z i
1] |0 0 0 1|1] by

P'=T-P

Rotation

. Rotation arround the coordinate axes

(B4 1y (B4

— e Y&
% (I ®

X axIs Yy axis Z axiIs

Counterclockwise when looking along
the positive half towards origin

Rotation around coordinate axes

Arround x

. Arround y

. Arround z

R.(0)=

R,(0)=

R.(0)=

cos@) —siné

1 0 0 0
0 cosd —-sin@d O
0 sn@ cos@ O

0O O 0 1

[cosd
0
—sind
0

0 0
cosd O
0 1

o o = O

0 0

0
sinf cosf O
1

0 0 0

_—0 O O

sin@ 0

P'=R_(6)-P

P'=R,(§)-P

P'=R_(6)-P

Rotation Arround a Parallel Axis

Rotating the object around a line parallel to one of the
axes: Translate to axis, rotate, translate back.

P’ :T(anpazp)' RX(Q)‘T(O,—yp,—Zp)' P

Ay Ay A y AD/

. & = ©
e

Translate Rotate Translate back

Figure from the textbook

y ¥
e‘-? Pty
Y
I X z B RS
(a)
(c)

Original Position of Object o
Rotate Object Through Angle 8

)} }
. Roy. .
-._,,_‘Hrﬂfr_:”)
z X 7 X
(b) (d)
Translate Rotation Axis onto x Axis Translate Rotation

Axis to Original Position

Figure 5-41

Sequence of transformations for rotating an object about an axis
that is parallel to the x axis.

Rotation Around an Arbitrary Axis

. Translate the object so that the k¢
rotation axis passes though the Q
origin ¢ 7< i
Rotate the object so that the / iy
rotation axis is aligned with one of

. Z
the coordinate axes

Make the specified rotation

Reverse the axis rotation

. Translate back

Rotation Around an Arbitrary Axis

y ff y ; y
P,y » P
! /
/ /
/ 1
P i/ ! e
1 ® Pl Pl -
!] "
’ x /‘ x Pi/' X
Z / z) »
[nitial Step 1 2 Step 2
Position Translate Rotate P;
P, to the Origin onto the z Axis
y y 1 y !
I /
s P Pys
/ !
! !
P ; f;
1,7)
Piﬁ/ X /f‘ X I.* X
- z z /
¢ Step 3 Step 4 Step 5
Rotate the Rotate the Axis Translate the
Object Around the to its Original Rotation Axis
z Axis Orientation to its Original

Position

Rotation Around an Arbitrary Axis

V=P,-P =(0,—x,y,—¥,2,—2)
V

u is the unit vector along VvV: U =M=(a,b,0)

First step: Translate P, to origin:

1 0 0 -x
0 1 0 -y
0 0 1 -z

00 0 1

Next step: Align u with the z axis
we need two rotations: rotate around x axis to get u

onto the xz plane, rotate around y axis to get u aligned
with z axis.

Rotation Around an Arbitrary Axis

Align u with the z axis
1) rotate around x axis to get U into the xz plane,
2) rotate around y axis to get U aligned with the z axis

Dot product and Cross Product

. vdotu =vX * ux + vy *uy + vz * uz. That
equals also to |v|*|u]*cos(a) If a is the angle
between v and u vectors. Dot product Is zero
If vectors are perpendicular.

V X U IS a vector that is perpendicular to both
vectors you multiply. Its length is
|v|*|u]|*sin(a), that is an area of
parallelogram built on them. If v and u are
parallel then the product is the null vector.

Rotation Around an Arbitrary Axis

Align u with the z axis
1) rotate around x axis to get U into the xz plane,
2) rotate around y axis to get U aligned with the z axis

u'=(0,b,c)

Projection of U on
yz plane

We need cosine and sine of o for rotation

u-u
CoSa = — 2 = © d =+b*+c’
ulu,| d
u'xu, =u |uu|sina=ub
b=dsina Lo 0
0o — =
d d
cosq == sinazé R.(2)= b ¢
d d o — —
d d
0 0 0

o O

_ O

Rotation Around an Arbitrary Axis

Align u with the z axis

2) rotate around y axis to get U aligned with the z axis

4
cos [= ‘u ‘ ‘—d
—a)

cosf=d sinf=-a
d 0 —a O]

R (o1 0 0
e P
0 0 0 1]

R(O)=T(x,y,2) R, (=a)-R (=5)-R.(0)-R,(f) R () T(=x,,-y,,-2)

Rotation, ... Alternative Method

Any rotation around origin can be represented by

3 orthogonal unit vectors:

R =

0

0

0

0
0
0
1

This matrix can be thought of as
rotating the unit r«, 7,x, and r;« vectors
onto x, y, and z axes.

So, to align a given rotation axis U onto the z axis,
we can define an (orthogonal) coordinate system and form this R matrix

. . r __
Define a new coordinate system (u’,u’,u’) u,=u
with the given rotation axis U using: , uxu,

u =
" Juxu,

u, =u’ xu’

Rotation, ... Alternative Method

u. =u=(a,b,c)
, _uxu, (a,b,c)x(1,0,0) (0,c,-b)
O TN R TOTY R s

U, =’ xu. =(0,c/d,~b/d)x(a,b,c)=(d—a-b/d,~a-c/d)

u =(0,c/d,~b/d)

g —a-b —a-c 0
d d
c —b
=10 - — _ o
R d d 0 Check if this is equal to
a b c 0
e R,(B) R, (a)

Scaling

Change the coordinates of the object by scaling

factors. ty

. . P’
.x’- S O 0 O 'x Pe N
y'|_ 0 s, 0 0]}y
z' 0 0 s 0fz Z
1llo o o 1]l

! ‘ryé
P'=S.P

Scaling with respect to a Fixed Point

. Translate to origin, scale, translate back

P'=T(x,,y,,2,)-S-T(-x,,~y,,—z,)-P

Ay

A

Translate

Ay

x A
V
X
z Z,

6 Vx

Scale Translate back

Scaling with respect to a Fixed Point

100 x]f[s, 0 0 Of1 00 x,
T(xf,yf,zf)-S-T(—xfa_Yfa_Zf):8 (1) (1) JZ/; ' 8 S()y S(Z 8 8 (1) (1))z;;
o0 o0 10 0 O IO O 0 1
10 0 x,|[s, 0 0 -sx]
{010 y |0 s 0 -s
10 0 1 Zf.O 0 5. —s.z
00 0 1)]{0 0 O 1
(s, 0 0 x,(I-s,)]
=T(xf»Yf»Zf)'S'T(_xf’_yf’_zf):g S(; z Zg—zj))
0o 0 0 1 |

Reflection

. Reflection over planes, lines or points

-1 0 O

0

[y

-1 0 O

0

0 0 0

1

0

—1

0 O

0

10 0 0

1-

0 0 0

Shear

Deform the shape depending on another dimension

SH .

SH _

===

o > Q =

SO = O

S O = O

a
b
1
0

oS = O O

_—o O O

_—o O O

x and y value depends on z value of the shape

y and zvalue depends on x value of the shape

OpenGL Geometric-Transformation
Functions

. In the core OpenGL library,

- a separate function iIs available for each basic
transformation (translate, rotate, scale)

- all transformations are specified in 3D
. Parameters

- Translation: translation amount in X, y, z axes

- Rotation: angle, orientation of the rotation axis
that passes through the origin

- Scaling: scaling factors for three coordinates

Basic OpenGL Transformations

. glTranslate™ (tx, ty, tz);

- For 2D applications set tz = 0O
. glRotate* (theta, vx, vy, vz);
- theta In degrees

- The rotation axis is defined by the vector
(vx,vy,vz), i.e., PO = (0,0,0) P1 = (vx,vy,Vvz)

. glScale* (sx, sy, sz);

- Use negative values to get reflection
transformation

OpenGL Matrix Operations

. glMatrixMode (GL_MODELVIEW);

- modelview mode to tell OpenGL that we will
be specifying geometric transformations. The
command simply says that the current matrix
operations will be applied on the 4 by 4
modelview matrix.

- the other mode is the projection mode, which
specifies the matrix that is used of projection
transformations (i.e., how a scene Is
projected onto the screen)

- There are also color and texture modes that
we will discuss later

OpenGL Matrix Operations

Once you are in the modelview mode, a call to a
transformation routine generates a matrix that is
multiplied by the current matrix for that mode

Whatever object defined is multiplied with the
current matrix

The contents of the current matrix can also be
manipulated explicitly

- glLoadldentity();
- glLoadMatrix* (elementsl16);

where elementsl6 is a single subscripted array that
specifies a matrix in column-major order

OpenGL Matrix Operations

. Example:

for (int k=0; k<16;k++)
elementslo6[k]=(float)k;

glLoadMatrixf(elementsl16);

will produce the matrix
0.0 40 8.0 120

1.0 50 9.0 13.0
20 6.0 10.0 14.0
30 7.0 11.0 15.0

OpenGL Matrix composition

. gIiMultMatrix* (otherElementsl6)

- The current matrix is postmultiplied with
the matrix specified in otherElementsl6

M _=M__-M’

curr curr

what does this imply?

INn a sequence of transformation commands, the last
one specified In the code will be the first
transformation to be applied.

OpenGL Matrix Stacks

. OpenGL maintains a matrix stack for all the
four matrix modes

. When we apply geometric transformations
using OpenGL functions, the 4 by 4 matrix at
the top of the matrix stack is modified

. The top is also called the current matrix

. If we want to create multiple transformation
seguences and save the composition results
we can make use of the OpenGL matrix stack

OpenGL Matrix Stacks

. Initially, there is only the identity matrix in
the stack

. To find out how many matrices are currently
In the stack:

- glGetintegerv(GL_MODELVIEW_STACK_ DEPTH,numMats)
glPushMatrix ();

— The current matrix is copied and stored in the second
stack position

glPopMatrix ();

- Destroys the matrix at the top and the second matrix in
the stack becomes the current matrix

	Geometric Transformations
	2D Geometric Transformations
	Basic Geometric Transformations
	Translation
	Rotation
	Rotation
	Rotation
	Scaling
	Homogenous Coordinates
	Slide Number 10
	 Transformations in Homogenous C.
	Composite Transformations
	Composite Transformations
	Slide Number 14
	Rotation around a pivot point
	Scaling with respect to a fixed point
	Order of matrix compositions
	Other Transformations
	Slide Number 19
	Transformations Between the Coordinate Systems
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Affine Transformations
	3 DIMENSIONAL�TRANSFORMATIONS
	3D Transformations
	Translation
	Rotation
	Rotation around coordinate axes
	Rotation Arround a Parallel Axis
	Figure from the textbook
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Dot product and Cross Product
	Rotation Around an Arbitrary Axis
	Rotation Around an Arbitrary Axis
	Rotation, ... Alternative Method
	Slide Number 41
	Scaling
	Scaling with respect to a Fixed Point
	Scaling with respect to a Fixed Point
	Reflection
	Shear
	OpenGL Geometric-Transformation Functions
	Basic OpenGL Transformations
	OpenGL Matrix Operations
	OpenGL Matrix Operations
	OpenGL Matrix Operations
	OpenGL Matrix composition
	OpenGL Matrix Stacks
	OpenGL Matrix Stacks

