3 DIMENSIONAL
VIEWING

Ceng 477
Introduction to Computer Graphics

Computer Engineering
METU

3D Viewing Concepts

* |nvolves some task that are not
present in 2D viewing

— 3D viewing reference frame, i.e.,

camera \v eeeeeee

~ Projection: Transfer the scene to view view plane
on a planar surface

— Visible part identification
— Lighting

— Surface characteristics (opaque,
transparent)

3D Viewing Pipeline

Modeling

) Viewing

‘ Transformations / Transformations
3D World ol
Scene oordinates

[

jx L/

MCS WCS VCS

|_Projection Transformation | -
Projection Normalized DCS
coordinates 2D Image | gnrg

Rasterization

Modeling Transformation

* Model coordinates to World coordinates:

World coordinates:

g _All shapes with their
_~ © oo absolute coordinates and sizes.

y world

/

world

<

3D Viewing-Coordinate
—————alameters

* World coordinates to Viewing coordinates:
Viewing transformations

World coordinates Viewing coordinates:

| Viewers (Camera) position and viewing
y Yoiew! plane.

world .- /v-xview

g < \._)

view g)
xworld U

world

Viewing Parameters

* How to define the viewing coordinate system (or view
reference coordinate system):

- Position of the viewer: P,
* view point or viewing position
- QOrientation of the viewer:
* View up vector: V
* Viewing direction: N
(view plane normal) . |
W The camera is

* N and V should be '(;’I‘r’:é:grfgprp"s'te
orthogonal

~ if it is not, V can be adjusted to

be orthogonal to N

The uvn Viewing-Coordinate
Reference Frame

* A set of unit vectors that define the viewing
coordinate system is obtained by:

By changing some of the viewing parameters (e.g., N, viewing position),
we can generate 3d viewing effects like rotating around an object or
flying over a scene.

Transformation Between Coordinate
Systems

* @Given the objects in world coordinates, find the transformation

matrix to transform them into viewing coordinate system. n, v, u :
unit vectors defining the viewing coordinate system.

d T
/k_ el

w

World coordinate system can be aligned with the viewing coordinate
system in two steps: (1) Translate P, to the origin of the world
coordinate system, (2) Rotate to align the axes.

Step 1

* Translation: Move view reference point to origin.
Py=(xp, 9: 29)

1 0 0 —x,

~_|0 1 0 =y Yo WV T
0 0 I -—z, \i Vv
000 1 P,

Step 2

* Rotation: After we find n, v and u, we can use them to
define the rotation matrix for aligning the axes.

- yw
u, u, u, 0 v
R Ve v,V 0 N x
n n n 0 S
X y Z
O 0 0 1

WC to VC transformation
—i02E

* The transformation matrix from world coordinate to
viewing reference frame

l/tx l/ty l/tZ _xOux_yOuy_ZOuz

_pr=|Vx Yy Ve THoViT YoVy TV,
N, TXoly ™Yoy, = 2o,

n. n
x Uy
0O 0 O 1

Projection transformations

* Projection: 3D to 2D. Perspective or parallel.

Point

Projections

* Classification of projections. Based on:

— Center of projection: infinity (parallel) or a point
(perspective)

— Projection lines wrt. projection plane: orthogonal
(orthographic), another angle (oblique)

Center of projection Center of projection

Perspective Orthographic Oblique

Projection types

Planar Geometric Projections

/\

Parallel Perspective

/

Orthograpic

Okﬁque One-ﬁ_point

Axonometric ~opinet Other

e

/' Cavalier
Other | @

Isometric

Orthographic projection

* Multiview Orthographic:

~ Parallel projection to 7=0,y=0,X=0 planes
— Used for engineering drawings, architectural drawing

— Accurate, scales preserved. Not 3D realistic.

Front

i

Axonometric projections

* Axonometric Projections to display more than one face of an
object

— Projection plane is not parallel to coordinate planes

120
@ -
— Dimetric: angles between two
principal axes are equal r \aﬁ%a/

— Trimetric: all angles different

— Isometric: all angles between
principal axes are equal

Isometric Projection

* Isometric Projection (i.e. N=[c,c,c])
— Scales preserved along axes, closer to 3D but still not realistic
— Used in designs and catalogues. Suitable for rectangular bodies.

— Exercise: Calculate rotation matrix for isometric projection, up vector on
X=Z.

Orthogonal Projection View

Plane

‘ \ . X,

Near
Plane

Normalization Transformation

* The coordinates within the view volume are normalized to the
range [-1,1] (or [0,1])

* The orthographic volume which may be a long rectangular
prism is going to be mapped to a unit cube

* A transformation to a left handed coordinate system (i.e., z-
axis inversion) may also be needed

* In the orthogonal volume (x_. .,y .,z) Iis mappedto (-1,-1,-1)
in the normalized volume and (x_.., v, z..) IS mapped to

(1,1,1)

Left-handed coordinate

—— O N

y screen

Depth (i.e., z values) T
are increasing away

Video Screen

from the viewport I
isplay ~~ .
Window s screen
N i S~
| |
ll = :ﬁ Viewport
TS~ |
\
\\\ Xooreen

Figure 7-30

A left-handed screen-coordinate reference frame.

Normalization transformation

(xmax’ y max”? Zfar)

K (1.1, 1)
Z /%
- norm \ X

yview
(xmin’ ymin’ Znear) (_ 1 s 1 s - 1)

xview . .
Normalized view volume.
Clipping 1s performed after
- everything 1s normalized into

this unit cube.

Oblique parallel projections

* Oblique projections
— Projectors have an oblique angle
— One of the sides have exact dimensions. Others are proportional.

— Similar to shear transform

— Using in mechanical viewing

Oblique Projection Types

* Based on the angle the projection lines and the projection
plane:

— Cavalier. Angle between projectors and projection plane is 45. Depth is
projected full scale 1

(p:45 (p=30

Cabinet. Angle between projectors and proejction plane is
arctan(2)=63.4... . Depth is projected "2 scale.

1
15 1 1/

Parallel Projection Summary

VPN: View Plane Normal
DOP: Direction of Projection

* Multiview orthographic

— VPN || a principal coordinate axis

- DOP || VPN

— Single face, exact dimensions
* Axonometric

— VPN not || a principal coordinate axis

- DOP || VPN
. > ~ Not exact dimensions
EO& * Oblique
| | E — DOP not || VPN
Y —— - One face exact dimension.

Perspective Projection

Single point center of projection (i.e. projection lines converge at a point)

Shapes are projected smaller as their distances to the view plane
Increase.

More realistic (human eye is a perspective projector)

Depending on number of principal axes intersecting the viewing plane:
1, 2 or 3 vanishing points

Projection plane

Center of projection

Perspective Projection

* Assume that the projection reference point is
selected at an arbitrary position (x, .y, z,) and the

P

view plane is located at a selected position z,, on
the z,,,, axis.

view

y view

\ xVieW ({prp,yprpazprp)

P=(x)y,2) \ / .

Vi

mx

view

Perspective Projection

* QOur goal is to find the projection of point P on the
view plane whichis (x,.y,z,)

\

(%,:Y,52,,)

P=(xy,2) I
s

Vi

mx

Projection equations

- The projected point (x,y,z,) can be found using
parametric equation of the projection line:

x =x—(x—x_u

o)
y=(y=y,,)u 0<u<l
7 —

(z—z,,)u

!
!

N <

We can solve for u at z’ = z,, and then plug-in « to
find x, and y,.

Projection equations

o 2y~ 2
A
Z —Z . —Z
xpzx e P prrp P
2y 2 Z %
_ (2o 2w Lp” 2
y. =y Y.,
P 7. —7 PiP\z —7
prp prp

The denominators are functions of z, hence we cannot directly derive the matrix
form. We will use homogeneous coordinates to do that.

* When the projection reference point is on the z

Special cases

axis.
X = =()
prp yprp
—
[, —y
I V
xp=x prp p

Y,=Y

ViEw

Special cases

* When the projection reference point is at the view
coordinate system origin.

xprp_yprp_zprp_o

—
Z Z

x =x| =L y,=y| =%
Ve Ve

Special cases

* When the view plane is the uv plane and the
projection reference point is on the z,.. axis.

View

xl?”l?:yprp :ZVP:O
—
[| [, |
_ prp _ prp
xp—x yp—y

Vanishing points

* When a scene is projected, lines that are parallel to the view
plane are projected also as parallel lines.

* What about parallel lines that are not parallel to the view
plane?

— They converge at a vanishing point

* For lines that are parallel to one of the principle axes of an
object the vanishing point is called the principle vanishing
point.

* The number of principle vanishing points is equal to the
number of principle axes that intersect with the view plane.

Perspective projection types
wrt principle vanishing points

* One point perspective
only z axis intersects
single vanishing point

* Two-point perspective
x and z axes intersect
two vanishing points

* Three-point perspective
all axes intersect
three vanishing points

Perspective Projection View

Frustum View
Volume

_

Field of View
Angle

| Projection
Far Clipping Reference Point
Plane Near Clipping

Plane

Perspective-Projection
Transformation Matrix

* We can use homogeneous coordinates to express
the perspective projection equations:
M I
YT T
* We compute}hﬁﬁw@éﬁous coordinates in the
perspective projection equations

x,=x(z —z

prp W)

vi=ylz,,—z,)+y, (2, —7)

Perspective-Projection
Transformation Matrix

* We can set up a perspective projection matrix to
convert 3D coordinates to homogenous
coordinates, then we can divide the homogeneous
coordinates by & to obtain the true positions

/h 0 0 0
0 1rh 0 0 |
10 0 1/h 0 "
0 0 0 1/h

Finding M

pers

* We need to be careful when finding z,. We need to
preserve the depth information, we cannot simply
use the coordinate z,, for all the projected points.
We set up the M__. matrix so that the z coordinate

pers

of a point is converted to a normalized z,

coordinate.
Lprp— Lup 0 "X KprpLap s_and ¢_are the
M — 0 < prp va —y prp M prp va Scaling and translation
per 0 0 s . parameters for
0 0 1 7 normalizing projected
prp

z coordinates.

Perspective Transformation

* The symmetric perspective transformation will map
the objects into a parallelpiped view volume

Centerline
[Far Plane
Symmetric
Frustum / Y Parallelepiped
View Volume | . View Volume

| Perspective Mapping >

\ 7
\ / _ [|
View Plane . '

\ \/(Clipping
\ / Window
/
\ /
\ W,

I .
¥ Projection Reference Point ®

Normalization

* Normalization is then similar to normalization of an
orthographic projection

Transformed
Frustum

View Volume (XW 050 YW 050 Zfar)

Ynorm
(xwmin’ YWin> 2 near) Cli - <norm
ipping _
Window Nor Malizgy;
/ - D
---“""‘—-.

.. (—1,—-1,-1)
Projection Normalized
Reference View

Point Volume

Zview

Clipping

* Clipping: Finding parts
of the objects in the
viewing volume.
Algorithms from 2D Normafized
clipping can easily be

applied to 3D and used
to clip objects against
faces of the normalized
view volume.

OpenGL 3D Viewing
————actions

* The viewing parameters (camera position, view-up
vector, view-plane normal) are specified as part of
modeling transformations. A matrix is formed and
concatenated with the current modelview matrix. So, to
set up camera parameters:

glMatrixMode (GL_MODELVIEW);
gluLookAt (x0, y0, z0, xref, yref, zref, Vx, Vy, Vz);

N = PO-Pref

Viewing direction is along the —z .. axis

VIEW

gluLookAt

* |If we do not invoke the gluLookAt function. The
default camera parameters are:
- P0= (09090)
-P_.=(0,0,-1)

ref —

- vV=(0,1,0)

OpenGL Orthogonal-
Projection Function

* Projection parameters are set in the OpenGL projection
mode.

glMatrixMode (GL_PROJECTION);

glOrtho(xwmin,xwmax,ywmin,ywmax,dnear,dfar);

* By default we have:
glOrtho (-1.0,1.0,-1.0,1.0,-1.0,1.0);

OpenGL Symmetric
Perspective-Projection
—U0Ction

* gluPerspective (theta, aspect, dnear, dfar)

* The parameters theta and aspect determines the
position and the size of the clipping window on the
near plane. thetais the field of view angle, i.e., the
angle between top and bottom clipping planes. aspect
IS the aspect ratio of the clipping window (i.e.,
width/height) . dnear and dfar are assigned positive
values with dnear<dfar. The actual positions of the
near and far planes are z,,,, = -dnear and z,,. = -dfar

near

General Perspective-
Projection Function

glFrustum (xwmin, xwmax, ywmin, ywmax, dnear, dfar)

Projection reference point is the viewing (camera position) and
the view plane normal is the z._. axis, viewing direction is -z

VIEW view "

If xwmin != -xwmax or ywmin!=-ywmax we can obtain an oblique
perspective-projection frustum. Otherwise, we will have a
symmetric perspective projection.

Additional clipping planes In
—_— OpenGl

* In addition to the 6 clipping planes, we may specify
new clipping planes and enable clipping of objects with
respect to these planes.

glClipPlane (id, planeparameters);
glEnable (id); // to enable clipping

glDisable (id); // to disable clipping

id is one of GL_CLIP_PLANEO, GL_CLIP_PLANE1,...

the plane parameters are the for constants, A, B, C, D, in
the plane equation Ax+By+Cz+D=0 (any object that
satisfies Ax+By+Cz+D<0 is clipped).

3D Dimensional Picking in
—0penGl

* In an interactive OpenGL application, you may want

to identity the object(s) which are below the clicked
mouse position.

* OpenGL API provides a mechanism for this
PUrpose.

* But it is not straightforward.

3D Picking in OpenGL

* Picking involves the following steps:

- Get the window coordinates of the mouse
— Enter selection mode

— Redefine the viewing volume so that only a small area of the
window around the cursor is rendered

— Render the scene, either using all primitives or only those
relevant to the picking operation

— Exit selection mode and identify the objects which were
rendered on that small part of the screen.

OpenGL actually uses clipping (in a very small window
around the mouse click) to identify clicked objects!

The Name Stack

* In order to identify which objects are clicked, you
have to name them. OpenGL provides a Name

Stack for this purpose.
— It is actually a stack of numbers, but those numbers
are used as IDs of the objects
* Name Stack functions:

— void glInitNames(void);

* This function creates an empty name stack. You are
required to call this function to initialize the stack prior

to pushing names.

Name Stack Functions

* Name Stack functions:

— void glPushName(GLuint name);

* This function pushes an integer ID to stack. Any OpenGL
primitives (i.e., vertices that define the geometry of the object)
will be associated with the current contents of the name stack

— void glPopName();
* Removes the name from top of the stack.
- void glLoadName(GLunit name);

* This function replaces the top of the stack with name. Same as
popping the stack and then pushing the name.

Name Stack Functions

* Restrictions:

— Cannot place name stack functions between
glBegin() and glEnd()

— Therefore, if you want to identify components of your
objects, you have to write them between separate
glBegin()/glEnd()s.

* Name Stack functions are ignored in normal
rendering mode. They are only considered in
selection rendering mode.

Example

#define BODY 1
#define HEAD 2

i/'c.)id renderIinSelectionMode() {
glinitNames();

glPushName(BODY);
drawBody();
glPopName();

glPushName(HEAD);
drawHead();
drawEyes();
glPopName();

drawGround();

Remarks

* You can have different rendering functions, i.e.,
displayFuncNormal(), displayFuncSelection(), for
different modes of rendering.

— The main purpose of such a separation would be for
efficiency. For example, if you have a very large scene
and you only want to pick some part of the scene. Then in
the displayFuncSelection() function you can draw only the
primitives related to the objects that you want to pick.

Entering the selection mode

#define BUFSIZE 512
GLuint selectBuf[BUFSIZE]

;;)id startPicking(int cursorX, int cursorY) {
GLint viewport[4];

glSelectBuffer(BUFSIZE,selectBuf);
glRenderMode(GL_SELECT);

glMatrixMode(GL_PROJECTION);

glPushMatrix();

glLoadldentity();

glGetintegerv(GL_VIEWPORT,viewport);
gluPickMatrix(cursorX,viewport[3]-cursorY, 5,5,viewport);
gluPerspective(45,ratio,0.1,1000);
glMatrixMode(GL_MODELVIEW);
glinitNames();

/* Define names and your objects in the scene */
/* Exit selection mode */
/* Process the hit objects */

Processing the hits Iin the
selection buffer

* To end the selection mode:

void stopPicking() {
int hits;

// restoring the original projection matrix
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);

glFlush();

// returning to normal rendering mode
hits = glIRenderMode(GL_RENDER);

// if there are hits process them

if (hits = 0) processHits(hits,selectBuf);

}

Format of the hit (i.e., selection)
————a 00

Number of names for hit 1

Minimum z for hit 1

Maximum z for hit 1

Name 1 of hit 1

Name n of hit 1

Number of names for hit 2

Example selection buffer

1

4.2822e+009

4.28436e+009
6

0

4.2732¢+009
4.273346+009
3

4.27138e+009
4.27155e+009

Processing Selection Buffer

* The object with minimum z in the selection buffer
will be what the user selected so you may use the
names corresponding to minimum z to identify the
object and do further application dependent
processing.

Example

>./picking

= SnowMen from Lighthou... E@@

You picked snowman 2
You picked snowman 0

You picked snowman 1

You picked snowman 3

You didn't click a snhowman!

Download, try, and examine the source code at:
http://www.ceng.metu.edu.tr/~tcan/misc/picking.c

References

* The textbook: pages 690-696

* OpenGL Lighthouse 3D — Picking Tutorial
— http://www.lighthouse3d.com/opengl/picking/

Exercise #1

» Given a line segment P,P in the world coordinate
system with:

- P,=(2,4,1) and Pg= (1,-2,3)

and the following viewing parameters specified with
the gluLookAt function:
- gluLookAt(1, 2, 3,0, 2, 3,0, -1, 0);

What will be the coordinates of the line when it is
transformed into the viewing coordinate system?

Solution steps

* Using the camera parameters, identify the u, v, n
vectors that define the viewing coordinate system.

* Construct the viewing transformation matrix as a
composition of a translation and rotation

* Apply the viewing transformation to the points of
the line

Finding u, v, n vectors

n=|—x|=(nn,, n) N=P0-Pref=(1,2,3) - (0,2,3) = (1,0,0) =n
|V| :<ux’uy’uz) u=(09091)

on

Transformat

iewing

\"/

—1

-2

-3
1

0 0
1

1

0

1

0 0 0

0
0 0|0
0 0 0/|0 0

—1

0

1

1

0

0

-1 0 2
0 0 -1

0
1

Mye ye=R-T

Mye ve=R-T

Apply Viewing Transformation

0 0 1 -3|]2] [-2
PisMvesc iy o o [l1[F| 1
0 0 0 11| |1]
0 0o 1 -3|/1] o
PiMcacPaly o o il s [
00 0 1|[1]]

Exercise #2

* @Given the following function call to gluPerspective:

— gluPerspective(60.0,0.8,4.0,100.0);

where the first parameter is the viewing angle, the
second parameter is the aspect ratio of the
clipping window (width/height), the third
parameter is the distance of the near plane to the
viewing origin, and the fourth parameter is the
distance of the far plane to the viewing origin.

Find the glFrustum parameters:

aspect = w/ h

glFrustum (xwmin, xwmax, ywmin, ywmax, dng
dfar)

Solution

gluPerspective defines a symmetric perspective projection
Therefore, xmin = -xmax and ymin=-ymax

ymax
330 4.0

ymax = tan (30) * 4.0

- 2.31
height = 2.31*2 = 4.62 \

width = aspect * height xmax = width/2 = 1.85
= 0.8 *4.62

= 3.7 glFrustum(-1.85,1.85,-2.31,2.31,4.0,100.0)

