3D OBJECT
REPRESENTATIONS

CEng 477
Introduction to Computer Graphics
Fall 2007-2008

Object Representations

* Types of objects:
geometrical shapes, trees, terrains, clouds, rocks, glass,
hair, furniture, human body, etc.

* Not possible to have a single representation for all

— Polygon surfaces

— Spline surfaces

— Procedural methods
~ Physical models

- Solid object models
- Fractals

Two categories

* 3D solid object representations can be generally
classified into two broad categories

— Boundary representations

* Inside and outside of objects are defined by this
representation. E.g., polygon facets, spline patches

— Space-partitioning representations

* The inside of the object is divided into non-
overlapping regions and the object is represented as
a collection of these interior components. E.g., octree
representation

Polygon Surfaces (Polyhedra)

* Set of adjacent polygons representing the object exteriors.
* All operations linear, so fast.

* Non-polyhedron shapes can be approximated by polygon
meshes.

* Smoothness is provided either by increasing the number of
polygons or interpolated shading methods.

eeee

Levels of detall Interpolated shading

’_.

7/

Data Structures

* Data structures for representing polygon surfaces:
- Efficiency
* Intersection calculations
* Normal calculations
* Access to adjacent polygons
- Flexibility
* Interactive systems
* Adding, changing, removing vertices, polygons
— Integrity

Polygon Tables

* Vertices Edges Polygons
V.i(X,,y,,Z,) E V.V, S,: E,E,EE,
V2:(x2,y2,22) Ez: Vz’Vs Sz: E25E5’E4’E3
Vs:(xs’ys’za) Es: Vz’Vs Ss: E10’E11’E7’E8
V4:(x4,y4,z4) E4: V4’V5 S4: E4’E6’E11
V(X5 YsZ5) E: V.V,
V. i(XgYeZe) E, V..V,
V_i(X,,Y,,Z,) E: V..V,
V,i(Xg,YgZg) E, V.V,
E, V.,V
E1o: V5’V6
E.:V.,V
11° 5V 7 V1: E1,E9 E1; 81
» Forward pointers: Vo EnELEs E, S,
i.e. to access Vo' EaFs Vi E,:S,.S,
adjacent surfaces Sobs s E,: S,
V.. EL,EE. E : :
daes 5. 374102 11 E5_ 32 Es' 84
°99 Ve EaEoBy E:S, E;:S,
V. Ee’E7’E11 E,: S1 E..: 1,83
V.:E_E, E .Q Q

* Additional geometric properties:
— Slope of edges
~— Normals
— Extends (bounding box)

* Integrity checks

YV, 3E_,E, suchthatVEE ,VEE,
Y E, ASsuchthatEES

YS, S isclosed
V'S, 3S, suchthat S,NS,# 80

S, islistedin E_<E islistedin S,

Polygon Meshes

* Triangle strips:
123, 234, 345, ..., 10 11 12

1234567891011 12 S

* Quadrilateral meshes:
nxm array of vertices

10

11

12

Plane Equations

* Equation of a polygon surface:

Ax+By+Cz+D=0
Linear set of equations:
(AID)x,+(BID)y,+(CID)z,=—1, k=1,2,3

A:yl(zz—z3)+y2(z3—zl)+y3(21—Zz)
Bzzl(Xz—x3)—|—Z2<X3—X1)+Z3(X1_xz)
C=x,(y,—)+, (y3=y) +x:(y,—¥,)
D=—x(y,25=Y32,) = %,(y32,= Y, 23) = X3(¥, 2, — ¥, %)

\Y

2

* Surface Normal: Counterclockwise
NZ(A,B,C) order.
extracting normal from vertices: v,
N=(V,=V,)X(V,=V)) l

* Find plane equation from normal and a point on the surface

(A,B,C)=N

N-(x,y,z)+D=0

P is a point in the surface (i.e. a vertex)
D=—N-P

* Inside outside tests of the surface (N is pointing towards
outside):

Ax+By+Cz+D<0, pointis inside the surface
Ax+By+Cz+D=>0, pointis outside the surface

OpenGL Polyhedron
——0Ctions

* There are two methods in OpenGL for specifying
polygon surfaces.

— You can use geometric primitives, GL_TRIANGLES,
GL_QUADS, etc. to describe the set of polygons
making up the surface

— Or, you can use the GLUT functions to generate five
regular polyhedra in wireframe or solid form.

Drawing a sphere with
GL QUAD STRIP

void drawSphere(double r, int lats, int longs) {
inti,j;
for(i = 0; i <= lats; i++) {
double lat0 = M _PI * (-0.5 + (double) (i - 1) / lats);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M _PI * (-0.5 + (double) i / lats);
double z1 = sin(lat1);
double zr1 = cos(lat1);
glBegin(GL_QUAD_STRIP);
for(j = 0; j <= longs; j++) {
double Ing =2 * M_PI * (double) (j - 1) / longs;
double x = cos(Ing);
double y = sin(Ing);
glVertex3f(x * zr0, y * zr0, z0);

glVertex3f(x * zr1,y * zr1, z1); |
) /

IEnd();
) 9lEnd0 You will not see 1t like this until

} you learn “lighting”.

Five regular polyhedra
provided by GLUT

Also called Platonic
solids.

The faces are identical
regular polygons.

All edges, edge angles
are equal.

Tetrahedron

* glutWireTetrahedron ();
* glutSolidTetrahedron ();

* This polyhedron is generated with its center at the
world-coordinate origin and with a radius equal to

3

Cube

* glutWireCube (edgelength);
* glutSolidCube (edgelength);

* Creates a cube centered at the world-coordinate
origin with the given edge length.

Octahedron

* glutWireOctahedron ();
* glutSolidOctahedron ();

* Creates a octahedron with 8 equilateral triangular
faces. The radius is 1.

Dodecahedron

* glutWireDodecahedron ();
* glutSolidDodecahedron ();

* Creates a dodecahedron centered at the world-

coordinate origin with 12 pentagon faces.

Ear = N T
_-‘.

lcosahedron

* glutWirelcosahedron ();
* glutSolidlcosahedron ();

* Creates an icosahedron with 20 equilateral
triangles. Center at origin and the radius is 1.

Curved Surfaces

* Can be represented by either parametric or non-
parametric equations.

* Types of curved surfaces
— Quadric surfaces
— Superquadrics
— Polynomial and Exponential Functions
- Spline Surfaces

Quadric Surfaces

* Described with second degree (quadric) equations.
* Examples:

- Spheres
— Ellipsoids
— Tori
— Paraboloids
— Hyperboloids
* Can also be created using spline representations.

Sphere

* Non-parametric equation
x2 + y2 + z2 =r
* Parametric equation using latitude and longitude
angles

2

X:FCOS(pCOSQ, —H/2§(p§ﬂ/2
y=rcos@sin@, —I<O<I
Z=rsImnQ

Ellipsoid

* Non-parametric equation

vz
T A i L
AN

* Parametric equation using latitude and longitude
angles

x=r cos@cosf, —HII2<@p<m/2
yzrycoscpsine, —n<0<m

Z=r 810 ¢

Superquadrics

* Adding additional parameters to quadric
representations to get new object shapes.

* One additional parameter is added to curve (i.e.,
2d) equations and two parameters are added to
surface (i.e., 3d) equations.

Superellipse

2/n

X:I”XCOSnQ, —-n<0<m
oL =

y=r,sin"0

OO

n=0 o<n<l n=1

Superellipse

* Used by industrial designers often

T

Superellipsoid

1s./s
(X \2/52 (\2/52 2" \2/51
- + l + i :1
\l"x/ \l"y/ I”Z/
xzrxcosslcpcossze, —11/2<@<1/?2
yzrycosslcpsinsze, -m<6<m

_ . 5
z=r_sin '@

Ipsol

Superell

OpenGL Quadric-Surface and
Cubic-Surface Functions

* GLUT and GLU provide functions to draw quadric-
surface objects.

* GLUT functions
— Sphere, cone, torus
* GLU functions

— Sphere, cylinder, tapered cylinder, cone, flat circular
ring (or hollow disk), and a section of a circular ring
(or disk)

* GLUT also provides a function to draw a “teapot”
(modeled with bicubic surface pathces).

- GLU cylinder
| —— GLUT sphere

| GLUT cone

Examples

Wiriviaw
/ /\,\,\,ﬁ\\? =N

St \\V .‘VA‘

LB
LT

I.l.

:.........,;._.._,.

-
F‘r
l.ﬂﬂ..

Q Q Q Q Q@ @ «a «

GLUT functions

utWireSphere (r, nLongitudes, nLatitudes);

utSolidSphere (r, nLongitudes, nLatitudes);
utWireCone(rBase, height, nLong, nLat);
utSolidCone(rBase, height, nLong, nLat);
utWireTorus(rCrossSection, rAxial, nConcentric, nRadial);
utWireTorus(rCrossSection, rAxial, nConcentric, nRadial);
utWire Teapot(size);

utSolidTeapot(size);

GLU Quadric-Surface
———knctions

* GLU functions are harder to use.

* You have to assign a name to the quadric.

* Activate the GLU quadric renderer

* Designate values for the surface parameters

* Example:

GLUquadricObj *mySphere;

mySphere = gluNewQuadric();
gluQuadricStyle (mySphere, GLU_LINE);
gluSphere (mySphere, r, nLong, nLat);

Quadric styles

* Other than GLU_LINE we have the following
drawing styles:

- GLU_POINT
- GLU_SILHOUETTE
- GLU_FILL

L
Q Q S Q

Other GLU quadric objects

uCylinder (name, rBase, rTop, height, nLong,
_at);

uDisk (name, rinner, rOuter, nRadii, nRings);

uPartialDisk (... parameters ...);

Additional functions to
manipulate GLU quadric

N o o+ TT=Y ol -

* gluDeleteQuadric (name);

* gluQuadricOrientation (name, normalDirection);
— To specify front/back directions.
- normalVector is GLU INSIDE or GLU OUTSIDE
* gluQuadricNormals (name, generationMode);

— Mode can be GLU NONE, GLU FLAT, or
GLU_SMOOTH based on the lighting conditions you
want to use for the quadric object.

Spline Representations

Spline curve: Curve consisting of continous curve segments
approximated or interpolated on polygon control points.

Spline surface: a set of two spline curves matched on a
smooth surface.

Interpolated: curve passes through control points

Approximated: guided by control points but not necessarily
passes through them.

Interpol
terpolated Approximated

* Convex hull of a spline curve: smallest polygon including all
control points.

* Characteristic polygon, control path: vertices along the
control points in the same order.

* Parametric equations:
x=x(u), y=ylu), z=z(u), u, <usu,

* Parametric continuity: Continuity properties of curve segments.

— Zero order: Curves intersects at
one end-point: C°
— First order: C° and curves has same

tangent at intersection: C! N

— Second order: C°, C' and curves has

same second order derivative: C? Ké\

* Geometric continuity:
Similar to parametric continuity but only the direction of
derivatives are significant. For example derivative (1,2) and (3,6)
are considered equal.

* G°% G', G2 : zero order, first order, and second order geometric
continuity.

Spline Equations

* Cubic curve equations:
x(u)zaxu3-|—bxu2-l—cxu-l—dx
y(W)=a.uw+b u'+c u+d 0<u<l

y y y y
z2(u)=a.uw’+b_u’+c u+d
Z Z Z Z

>~ o

QL O

* General form: x(u)= U-MS-Mg

« M.: spline transformation (blending functions)
geometric constraints (control points)

Natural Cubic Splines

* Interpolation of n+1 control points. n curve segments. 4n
coefficients to determine

* Second order continuity. 4 equation for each of n-1 common
points:

x(D=p, 2,,(0=p,, (x(1)=x,,(0), {xi(1)=x,,(0)¢
4n equations required, 4n-4 so far.

* Starting point condition, end point condition.
x,(0)=p,, x,(1)=p,

* Assume second derivative 0 at end-points or add phantom
control points p_, p_ ..

x,(0)=0, {x (1)=0¢

* Write 4n equations for 4n unknown coefficients and solve.

* Changes are not local. A control point effects all equations.

* Expensive. Solve 4n system of equations for changes.

Hermite Interpolation

* End point constraints for each segment is given as:
P(0)=p,, P(1)=p,,;, {P(0)=Dp,, {Pi(1)=Dp,,,,¢

* Control point positions and first derivatives are given as
constraints for each end-point."

a a
P(u)Z[u3 W ou 1]- b P (u)Z[?}u2 2u 1 0F b
c c
d d
} } - - - - -_1 [
Py 0 0 0 1|la al |0 0 0 1 Py
Pevr |_|1 1 1 1||b b1 1 1 1 P+
Dp, | [0 0 1 0f|c c| |0 o1 0] |Dp,
d 3 2 1 0
Dp; 4 .3 2 1 0flad - < L . Dp, .,

Hermite curves

al 1o 0 0o 1| P& 2 -2 1 1 || P& Py

b:1 1 1 1 pk+1 :_3 3 _2 _1 pk+1 :M . pk-|-1

c/10 01 0f |Dp | |O O 1 O||Dp, “| Dp,
1 0 0 0

-d- .3 2 10 Dpk+1 - Dpk+1 I)pk+1

P(u)Zpk(2u3—3u2+1)-|—pk+1(2u’ +3u’))+Dp, (u 2w +u)+Dp, ., (w—u’

e

These polynomials are called Hermite
blending functions, and tells us how to blend
boundary conditions to generate the position

of a point P(u#) on the curve

Hermite blending functions

Hy(u) H(u)
1r 1=
0.8 0.8
0.6 F 0.6 -
0.4 0.4
02F 02F
:llllllllllllllllllllll i :l IIIllllIIIIIlIlIlIIllIu
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) (b)
Hy(u) Hy(u)
1 I
0.8 0.8
0.6 0.6
0'4:_ 0.4:—
02 02
:Illlllllllllllllll |u O:llIIIIlllIIIIIIlIlIlIIllIu
0 0.2 0.4 0.6 0.8 1 C 4 0.6 0.8 1
-025

(©) (d)

Hermite curves

* Segments are local. First order continuity
* Slopes at control points are required.

* Cardinal splines and Kochanek-Bartel splines approximate
slopes from neighbor control points.

Bezier Curves

* A Bézier curve approximates any number of control points
for a curve section (degree of the Bézier curve depends on
the number of control points and their relative positions)

P(u)=), p,BEZ, (u), 0<u<l
k=0

n

k

n!

k n—k
), -
w({1=u) kI (n—k)!

BEZ, ,(u)= Z

* The coordinates of the control points are blended using Bézier
blending functions BEZ, (1)

* Polynomial degree of a Bézier curve is one less than the number
of control points.
3 points : parabola
4 points : cubic curve
5 points : fourth order curve

Cubic Beéezier Curves

* Most graphics packages provide Cubic Béziers.

BEZ,,=(1—u)’ BEZ, ,=3u(l—u)’
BEZ,,=3u’(l—u) BEZ,,=u
Po
P(u)Z[u3 uwoou IIMBGZ- Py
P
-1 3 -3 P

Cubic Bezie

r blending

———nctions

multiplied with

BEZZ__‘;(u)
1

0.8
0.6
0.4

0.2

0.4 0.6 0.8

(a)

0.2

multiplied with
P,

0

02 0.4 0.6 0.8
©

1

1

173

BEZ, (1)
1

0.8

multiplied with
P,

0.6
0.4

0.2

(b)

BEZ?,__S(u)
1

0.8

multiplied with
P;

0.6
0.4

0.2

0.4 0.6 0.8 1
(d)

u
0 0.2

The four Bézier blending functions for cubic curves (n=3, i.e. 4 control pts.)

Properties of Bézier curves

* Passes through start and end points

P(0)=p,, P(1)=p,

* First derivates at start and end are:
P (0)=—np,+np,
P(1)=-np _ +np,

* Lies in the convex hull

Joining Bézier curves

* Start and end points are same (C°)

* Choose adjacent points to start and end in the same line (C)
P1

s\

pO,:pn /// \\
. n

p,=p,*—(p,—p,_)
n

Po

nand n’ are the number of
control points in the first and in the
second curve segment respectively . .

* (2 continuity is not generally used in cubic Bézier curves. Because the
information of the current segment will fix the first three points of the
next curve segment

Bezier Surfaces

* Two sets of orthogonal Bézier curves are used.

* Cartesian product of Bézier blending functions:

m

Bézier Patches

* A common form of approximating larger surfaces by tiling
with cubic Bézier patches. m=n=3

* 4 by 4 = 16 control points.

Cubic Beézier Surfaces

* Matrix form

Bez

P(u,v)=U-M, -P-M;_-T'=

-1 3 =3

G a3 63
-3 3 0
1 0 0

* Joining patches:

similar to curves. C° C' can be established by choosing control

points accordingly.

o O o =

1P1o

P>

o p3’0

o o o =

= e =2 =

Displaying Curves and
—lfaces

* Horner's rule: less number of operations for calculating
polynoms.

x(u)zaxu3+bxu2+cxu+dx
x(u)=((a,u+b Jutc Jutd,

* Forward-difference calculations:
Incremental calculation of the next value.

— Linear case and using subintervals of fixed size to divide
u:

u,, ,=u,+0, k=0,12,... 1,=0

X, =a_ u,+b X,.=a (u+6)+b,

X1 =X T X x=a,0 > constant

Forward-difference for cubic-

——plRes

* Cubic equations
xkzaxui—l—bxui—l—cxuk—l-dx xk+1=ax(uk—|-5)3—l—bx(uk—l-5)z—l—cx(uk—|—5)+d
x,=3a _6i+(3a_6°+2b 6)u,+(a 6 +b 6 +c 6)

_ B 0 3 »
X, =X+ ,X, 2xk—6ax§ uk—|-6ax5 —I—2bx5
X, .= .x.+ .x x =6a 6°
X1 2% T 34 3 Xk X
XO:dx

xozax53—l—bx52—l—cx5
2x0=6ax53—|— 2b 6°

Once we compute these initial values, the calculation for next x-coordinate
position takes only three additions.

Example

Xo=d
xozax53—|—bx52—l—cx5
,x,=6a_6°+2b 6
3xk:6ax§3

* Example:

(a.b,c,d)=(1,2,3,4),6 =0.1

X, =6-1-6°=0.006

X

A x

A, x

4.000
4.321
4.688
5.107
5.584
6.125
6.736
7.423
8.192
9.049

0.321
0.367
0.419
0.477
0.541
0.611
0.687
0.769
0.857
0.951

0.046
0.052
0.058
0.064
0.070
0.076
0.082
0.088
0.094
0.100

OpenGL Bézier-Spline Curve
———U0ctions

* glMap17*() to specify control points
* glEnable (GL_MAP1_VERTEX 3)

— Activate curve generation routines
* glDisable (GL_MAP1_VERTEX_ 3)

— Deactivate curve generation routines
* glEvalCoord1* (uValue)

— Generates the point coordinate at the uValue
— It actually generates a glVertex3 function!!

Example

GLfloat ctrlPts [4] [3] = {{0.0,1.0,2.0},...... };
glMap1f (GL_MAP1_VERTEX 3,0.0,1.0,3,4,&ctrIPts[0][0]);
glEnable (GL_MAP1_VERTEX 3);
Glint k;
glBegin (GL_LINE_STRIP);
for (k=0;k<=50;k++)
glEvalCoord1f(GLfloat (k) / 50.0);
glEnd ();

Generating uniformly spaced u
—AlUOS

We may replace the glBegin(), inner for loop, and
glEnd() with:

glMapGrid1f (50, 0.0, 1.0);
glEvalMesh1 (GL_LINE, 0, 50);

OpenGL Bézier-Spline Surface
—0ctions

* glMap2* () to specify control points
* glEnable (GL_MAP2 VERTEX 3)

— Activate curve generation routines
* glDisable (GL_MAP2_ VERTEX_ 3)

— Deactivate curve generation routines
* glEvalCoord2* (uValue, vValue)

— Generates the point coordinate at the uValue, vValue
— This also generates a glVertex3 function.

Example

GLfloat ctriPts [4] [4] [3] = {{{0.0,1.0,

gIMap2f
rIPts[0][0][0]);

glEnable (GL_MAP2_VERTEX 3);

glMapGrid2f (40,0.0,1.0,40,0.0,1.0);
glEvalMesh2 (GL_LINE,0,40,0,40);

// GL_POINT and GL_FILL is also available with
glEvalMesh2()

Sweep Representations

* Use reflections, translations and rotations to construct new
shapes.

o]

P(u)

Translational Rotational
Sweep Sweep

Translational Sweep

(a) (b)

Figure 8-55

Constructing a solid with a translational sweep. Translating the control
points of the periodic spline curve in (a) generates the solid shown in
(b), whose surface can be described with the point function P(u,v).

Rotational Sweep

AXxis of
Rotation
P(u,v)

Pro-——————— ade
|
| I)
| | U
| |
I I
I P(L{,) |

Poé———————— +P; > U

(a) (b)

Figure 8-56

Constructing a solid with a rotational sweep. Rotating the control points of the periodic
spline curve in (a) about the given rotation axis generates the solid shown in (b),
whose surface can be described with the point function P(u,).

Hierarchical Models

Combine smaller/simpler shapes to construct complex
objects and scenes.

Stored in trees or similar data structures
Operations are based on traversal of the tree

Keeping information like bounding boxes in tree nodes
accelarate the operations.

Scene Graphs

DAG's (Directed Acyclic Graphs) to represent scenes and
complex objects.

Nodes: Grouping nodes, Transform nodes, Level Of Detalil
nodes, Light Source nodes, Attribute nodes, State nodes.
Leaves: Object geometric descriptions.

Why not tree but DAG?
Available libraries: i.e. www.openscenegraph.org

— Java3D is also based on Scene Graph Model

Efficient display of objects, picking objects, state change
and animations.

Scene Graph Representation

SHNG
SIONNCIC

eg}ea T

Constructive Solid Geometry

* Combine multiple shapes with set operations (intersection,
union, deletion) to construct new shapes.

AUB ANB A-B B—A

CSG Tree Representation

* Set operations and transformations combined:

TR LEL J J

* union(transA(box),diff(transB(box),transC(cylinder))

A CSG Tree

Implementing CSG

* Ray casting methods are used for rendering and
finding properties of volumes constructed with this
method.

* Parallel lines emanating from the xy plane (firing
plane) along the z direction are intersected with the
objects

* The intersection points are sorted according to the
distance form the firing plane

* Based on the operation the extents (i.e., the surface
limits) of the constructed object can be found.

Ray Casting

Firing
Plane\ VA _ Pixel
Ray

-

-

o

1@l
x‘\/‘%

Ray Casting

X, YA
obj,

® .D Pixel Raz Operation Surface Limits

B Union A,D

Intersection C,B

Firing — Difference B,D

Plane > (obj, — obj,)
Z

Implementation Details

* Simply +1 for outside—inside, -1 for
Inside—outside transition. Positives are solid.
A B C D

Q 1 2 1 0
nQ O 1 0 0
Q 1 0 -1 0
P -1 0 1 0

A c |D
RAY -

P
Q

D
D
D _
Q -

Calculating the Volume

Ul

Volume along the ray:

Vim 4, 2

Total Volume:

V) V.
L,]

Octrees

* Divide a volume in equal binary partitions in all dimensions
recursively to represent solid object volumes. Combining
leaf cubes gives the volume.

* 2D: quadtree

. ———2

s
-

E

£

* 2D: quadtree; 3D: octree

* Volume data: Medical data like Magnetic Resonance.
Geographical info (minerals etc.)

* 2D: Pixel ; 3D: voxel.

* Volumes consisting of large continous subvolumes with
properties. Volumes with many wholes, spaces. Surface
information is not sufficient or tracktable.

* Keeping all volume in terms of voxels, too expensive: space
and processor.

— Therefore, homogeneous regions of the space can be
represented by larger spatial components

* 8 elements at each node.

6
* |f volume completely resides in f —
a cube, it is not further divided: 1

leaf node — 0~
. . 7 e
* Otherwise nodes are recursively ~__ 3
subdivided. ~_

* Extent of a tree node is the extent of the cube it defines.

* Surfaces can be extracted by traversing the leaves with
geometrical adjacency.

Fractal Geometry Methods

Synthetic objects: regular, known dimension

Natural objects: recursive (self repeating), the higher the
precision, the higher the details you get.

Example: tree branches, terrains, textures.
Classification:

— Self-similar: same scaling parameter s is used in all
dimensions, scaled-down shape is similar to original

- Self-affine: self similar with different scaling parameters and
transformations. Statistical when random parameters are
involved.

Fractal Dimension

* Fractal dimension:

— Amount of variation of a self similar object. Denoted
as D.

— Fragmentation, roughness of the object.

* The fractal dimension of a self-similar fractal with a
single scaling factor s is obtained using ideas from
subdivision of a Euclidean object.

Fractal Dimension

, L
n

I =
11— e— = >

, A
A'=5
/
Dy=2, s=L =4
}11I2
nst=1
b
(b) —_—
/ 3
el - !
L~
e

The relationship between the number
of subparts and the scaling factor 1s

D
ns =1

where D, 1s the Euclidean dimension.

We can define the fractal dimension
similarly with number of subparts n
and a given scaling factor s.

D
n-s =1

Koch curve

Initiator: /\

Generator:

N\

The fractal dimension of the
Koch curve

D
ns =1
Inn n: number of pieces s: scaling factor

:ln(lls)

In4

n=d s=US DEIATE)

=1.2619

Exercise

* What is the fractal dimension of the following
shape?

Initiator Generator

Each edge of the square 1s replaced by the generator recursively.

What 1s n? What 1s s?

Exercise

* What is the fractal dimension of the following
shape?

Initiator Generator

Each edge of the square 1s replaced by the generator recursively.

n=8, s=1/4, D=1.5

Length of a fractal curve

* Increases at each subdivision. Infinite length at

infinite detail.
Segment Length =1 Segment Length = % Segment Length = %
Length =1 Length = % Length = %6

Random Variation

* Using a probability
distribution function we can
iIntroduce small variations
during the subdivision of the
object for more realism.

Images from a 1986 paper.

Random Mid-point Variation

* Find the midpoint of an edge A-B. Add a random factor and
divide the edge in two as: A-M, M-A at each step.

* Usefull for height maps, clouds, plants.

« 2D:

X, (X, X) /2 r 1S a random number selected

from Gaussian distribution with
Ym (Ya+Yp)2+7T ean 0 and variance that depends on D
* 3D: For corners of a squareinf,thk lendth between end points

ZAB:(ZA—l_ZB)/Z—I_r’ ZBC:<ZB—|—ZC)/2_|_I,’ A B
Zopy=\Z.+Z)2+, Z, =(Z,+Z,)2+r,
Z,=(Z A2 AL +Z,,)4+r, 5 .

Random Mid-point Variation

T)
L “'rai,"-;
. .d:"'\"‘_ il T
o S
Lyt SN
T A R Ty
R T R R s
T L sl
-J'=¥fﬂ"£'.:r"* ':-H-".:". i,

TN
R
S
SIS
I)
L

