CENG 732

Computer Animation

Spring 2006-2007
Week 2
Technical Preliminaries and Introduction to Keyframing

This week

- Recap from CEng 477
- The Display Pipeline
- Basic Transformations / Composite Transformations
- Round-off Error Considerations
- Orientation representations
- Basic Orientation Interpolation Example

The Display
Pipeline

Animation

- Animation is typically produced by the following:
- Modifying the position and orientation of objects in world space over time; modifying the shape of objects over time; modifying display attributes of objects over time; transforming the observer position and orientation in world space over time; or some combination of these transformations

Ray Casting Display Pipeline

Applying Transformations to Points

- Points are represented in homogenous coordinates and the transformation matrix is left multiplied by the column vector that represents the point

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & m \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Composite Transformations

- A series of transformations can be multiplied together to produce a compound (or composite) transformation.

$$
\begin{gathered}
P^{\prime}=M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} P \\
M=M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} \\
P^{\prime}=M P
\end{gathered}
$$

Basic Transformations

- Translation
- Scaling
- Rotations around major axes

Rotation around y-axis

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Rotation around z -axis

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Extracting Transformations from a Matrix

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

Three different ways

- Apply a delta y-axis rotation to the points on the sphere each frame
- Apply a delta y-axis rotation to the transformation matrix and then apply it to the points
- Add a delta value to an angle variable and construct the transformation matrix from scratch each frame

Rotations: an alternative method

- The desired rotation defines a unit coordinate system

$\mathrm{x}, \mathrm{y}, \mathrm{z}$ - global coordinate system
$\mathrm{X}, \mathrm{Y}, Z$ - deisred orientation defined by unit coordinate system

Round-off Errors

- Assume you want to rotate a sphere around the origin.
- How would you do that?

Orientation Representation

- How do we represent the arbitrary orientation of an object in 3D space?
- Does that representation allow for interpolation if we want to interpolate the in-between frames of two given keyframes (key-orientations) of the object?

Orientation Representation

- Transformation Matrix Representation
- Fixed Angle Representation
- Euler Angle Representation
- Axis-Angle Representation
- Example on Axis-Angle Representation
- Quaternion Representation

Fixed Angle Representation

Rotate about global axes in a fixed order
Rotating about global axes is what the rotation matrices do

Can use any triple of axes

Rotate about x , then y , then z
(10, 90, -45)

Angle and Axis Representation

- Euler's rotation theorem
- One orientation can be derived from another by a single rotation about an axis
- So, we can use an axis and a single angle to represent an orientation (with respect to the object's initial orientation)
- We can implement interpolation in this representations

Gimbal Lock

Equivalence of Fixed angles and Euler angles
$R_{y}^{\prime}(\beta) R_{x}(\alpha)=R_{x}(\alpha) R_{y}(\beta) R_{x}(\alpha) R_{x}(-\alpha)=R_{x}(\alpha) R_{y}(\beta)$
$R_{z}{ }^{\prime \prime}(\gamma) R_{y}{ }^{\prime}(\beta) R_{x}(\alpha)=R_{x}(\alpha) R_{y}(\beta) R_{z}(\gamma) R_{y}(-\alpha) R_{x}(-\beta) R_{y}(\beta) R_{x}(\alpha)=R_{x}(\alpha) R_{y}(\beta) R_{z}(\gamma)$

Quaternions

Representing Rotations Using Quaternions

$$
q=\operatorname{Rot}_{\theta,(x, y, z)}=[\cos (\theta / 2), \sin (\theta / 2) \cdot(x, y, z)]
$$

quaternions can be used to represent orientation with four values (a scalar and a 3D vector)

$$
\begin{aligned}
-q & =\operatorname{Rot}_{-\theta,-(x, y, z)} \\
& =[\cos (-\theta / 2), \sin ((-\theta) / 2) \cdot(-(x, y, z))] \\
& =[\cos (\theta / 2),-\sin (\theta / 2) \cdot(-(x, y, z))] \\
& =[\cos (\theta / 2), \sin (\theta / 2) \cdot x, y, z] \\
& =\operatorname{Rot}_{\theta,(x, y, z)} \\
& =q
\end{aligned}
$$

Basic Quaternion Math
$\left[\mathbf{s}_{1}, \mathrm{~V}_{1}\right]+\left[\mathbf{s}_{2}, \mathrm{~V}_{2}\right]=\left[\mathbf{s}_{1}+\mathbf{s}_{2}, \mathrm{~V}_{1}+\mathrm{v}_{2}\right]$
$\left[s_{1}, v_{1}\right] \cdot\left[s_{2}, v_{2}\right]=\left[s_{1} \cdot s_{2}-v_{1} \cdot v_{2}, s_{1} \cdot v_{2}+s_{2} \cdot v_{1}+v_{1} \times v_{2}\right.$
$\left[0, v_{1}\right] \cdot\left[0, v_{2}\right]=\left[0, v_{1} \times v_{2}\right] \quad$ iff $v_{1} \bullet v_{2}=0$
$q^{-1}=(1 /\|q\|)^{2} \cdot[s,-v]$
$\|q\|=\sqrt{s^{2}+x^{2}+y^{2}+z^{2}}$
where

Unit-length Quaternion

$q /(\|q\|)$

Quaternions

- Quaternion representation both allow for interpolation between arbitrary orientations and for representation of a series of rotations
Rotating Vectors Using
Quaternions
$v^{\prime}=\operatorname{Rot}(v)=q^{-1} \cdot v \cdot q$
$\operatorname{Rot}_{q}\left(\operatorname{Rot}_{p}(v)\right)=q^{-1} \cdot\left(p^{-1} \cdot v \cdot p\right) \cdot q$
$=\left((p q)^{-1} \cdot v \cdot(p q)\right)$
$=\operatorname{Rot}_{p q}(v)$
$\operatorname{Rot}^{-1}(\operatorname{Rot}(v))=q \cdot\left(q^{-1} \cdot v \cdot q\right) \cdot q^{-1}=v$

Interpolation of Rotations using

 Quaternion Representation

