CENG 732
Computer Animation

Spring 2006-2007
Week 2
Technical Preliminaries and
Introduction to Keyframing

This week

* Recap from CEng 477

— The Display Pipeline
— Basic Transformations / Composite
Transformations

* Round-off Error Considerations
* Orientation representations
+ Basic Orientation Interpolation Example
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Animation

» Animation is typically produced by the
following:

— Modifying the position and orientation of
objects in world space over time; modifying
the shape of objects over time; modifying
display attributes of objects over time;
transforming the observer position and
orientation in world space over time; or some
combination of these transformations

Applying Transformations to Points

» Points are represented in homogenous
coordinates and the transformation matrix
is left multiplied by the column vector that
represents the point
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Composite Transformations

*» A series of transformations can be
multiplied together to produce a compound
(or composite) transformation.
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Basic Transformations

* Translation
+ Scaling
* Rotations around major axes
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Rotation around x-axis
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Rotation around z-axis
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Rotations: an alternative method

» The desired rotation defines a unit
coordinate system

x.v.z - global coordinate system

XY - deisred orientation defined by
unit coordinate system

Extracting Transformations from a
Matrix
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Round-off Errors

+ Assume you want to rotate a sphere
around the origin.

* How would you do that?

Three different ways

* Apply a delta y-axis rotation to the points
on the sphere each frame

* Apply a delta y-axis rotation to the
transformation matrix and then apply it to
the points

* Add a delta value to an angle variable and
construct the transformation matrix from
scratch each frame

Approach 1
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Approach 2

R = identity matrix
R4, = v-axis rotation of 5 degrees
repeat until {donch
for cach point P of the moon |
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record a frame of the animation
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Orientation Representation

* How do we represent the arbitrary
orientation of an object in 3D space?

» Does that representation allow for
interpolation if we want to interpolate the
in-between frames of two given key-
frames (key-orientations) of the object?

Orientation Representation

Transformation Matrix Representation
Fixed Angle Representation

Euler Angle Representation
Axis-Angle Representation

— Example on Axis-Angle Representation
Quaternion Representation

Transformation Matrix
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<) Half way between orientation representations

Fixed Angle Representation

‘ Rotate about global axes in a fixed order ‘

‘ Rotating about global axes is what the rotation matrices do ‘

‘ Can use any triple of axes ‘

‘ Rotate about x, then y, then z ‘

(10, 90, -45) z




Fixed Angle Representation
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Euler Angle Representation

‘ Rotate about local axes of object ‘

yaw

Roll, Pitch, Yaw

(10, 90, -45)

0 pitch

Local Coordinate system attached 1o object

Equivalence of Fixed angles and Euler angles
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Angle and Axis Representation

* Euler’s rotation theorem

— One orientation can be derived from another
by a single rotation about an axis

+ So, we can use an axis and a single angle
to represent an orientation (with respect to
the object’s initial orientation)

* We can implement interpolation in this
representations

Euler's Theorem
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Interpolation Using Axis-Angle
Representation

Example

Quaternions

+ Similar to axis-angle representations
quaternions can be used to represent
orientation with four values (a scalar and a
3D vector)

[s,x,y,z] or [s,V]

q

Representing Rotations Using
Quaternions
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Basic Quaternion Math
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Quaternions

» Quaternion representation both allow for
interpolation between arbitrary orientations
and for representation of a series of
rotations

Rotating Vectors Using
Quaternions

V' = Rot(v) = q_l Vg

R()fq(R(}fp('.f)) = q_l : (p_l vep)-q

= ((pg)" v (p))

= Ror‘r,q(v)

Rot ' (Rot(v)) = q - (q_l “veqg) - q_] =y

Interpolation of Rotations using
Quaternion Representation

Interpolation of Rotations using
Quaternion Representation
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