CENG 732 Computer Animation

Spring 2006-2007 Week 2 Technical Preliminaries and Introduction to Keyframing

This week

- Recap from CEng 477
 - The Display Pipeline
 - Basic Transformations / Composite Transformations
- Round-off Error Considerations
- Orientation representations
- Basic Orientation Interpolation Example

The Display Pipeline

Ray Casting Display Pipeline

Animation

- Animation is typically produced by the following:
 - Modifying the position and orientation of objects in world space over time; modifying the shape of objects over time; modifying display attributes of objects over time; transforming the observer position and orientation in world space over time; or some combination of these transformations

Applying Transformations to Points

 Points are represented in homogenous coordinates and the transformation matrix is left multiplied by the column vector that represents the point

$$\begin{array}{c} x' \\ y' \\ z' \\ 1 \end{array} = \left[\begin{array}{c} a & b & c & d \\ e & f & g & h \\ i & j & k & m \\ 0 & 0 & 0 & 1 \end{array} \right] x \\ \end{array}$$

Basic Transformations

- Translation
- Scaling
- Rotations around major axes

- Apply a delta y-axis rotation to the points on the sphere each frame
- Apply a delta y-axis rotation to the transformation matrix and then apply it to the points
- Add a delta value to an angle variable and construct the transformation matrix from scratch each frame

Orientation Representation

- How do we represent the arbitrary orientation of an object in 3D space?
- Does that representation allow for interpolation if we want to interpolate the in-between frames of two given keyframes (key-orientations) of the object?

Orientation Representation

- Transformation Matrix Representation
- Fixed Angle Representation
- Euler Angle Representation
- Axis-Angle Representation
 Example on Axis-Angle Representation
- Quaternion Representation

Angle and Axis Representation

- Euler's rotation theorem
 - One orientation can be derived from another by a single rotation about an axis
- So, we can use an axis and a single angle to represent an orientation (with respect to the object's initial orientation)
- We can implement interpolation in this representations

Euler's Theorem

$$-q = Rot_{-\theta, -(x, y, z)}$$

=
$$[\cos(-\theta/2), \sin((-\theta)/2) \cdot (-(x, y, z))]$$

- $= [\cos(\theta/2), -\sin(\theta/2) \cdot (-(x, y, z))]$
- = $[\cos(\theta/2), \sin(\theta/2) \cdot x, y, z]$
- $= Rot_{\theta,(x,y,z)}$
- = q

Quaternions

- Quaternion representation both allow for interpolation between arbitrary orientations and for representation of a series of rotations
- Rotating Vectors Using Quaternions $v' = Rot(v) = q^{-1} \cdot v \cdot q$ $Rot_q(Rot_p(v)) = q^{-1} \cdot (p^{-1} \cdot v \cdot p) \cdot q$ $= ((pq)^{-1} \cdot v \cdot (pq))$ $= Rot_{pq}(v)$ $Rot^{-1}(Rot(v)) = q \cdot (q^{-1} \cdot v \cdot q) \cdot q^{-1} = v$

