Quaternions

» Quaternion representation both allow for
interpolation between arbitrary orientations
and for representation of a series of
rotations

Rotating Vectors Using
Quaternions

V' = Rot(v) = q_l Vg

R()fq(R(}fp('.f)) = q_l : (p_l vep)-q

= ((pg)" v (p))

= Ror‘r,q(v)

Rot ' (Rot(v)) = q - (q_l “veqg) - q_] =y

Interpolation of Rotations using
Quaternion Representation

Interpolation of Rotations using
Quaternion Representation

coshh = gleg2 =51 -52+v]ev2

W/

Slerp(gl. g2, u) = ((sin((1 —u)-0))/(sinB)) - gl +(sin{u-0))/(sinB) - g2

CENG 732
Computer Animation

Spring 2006-2007
Week 3
Interpolation

This week

* Recap on interpolation/approximation
splines
— Natural Cubic Splines
— Hermite Interpolation
— Catmull-Rom Splines
— Bezier Curves
» Timing considerations
— Curve reparameterization by arclength
— Speed control
+ Path following




The problem

* Imagine an animator wants an object to be
at position (-5,0,0) at frame 22 and at
position (5,0,0) at frame 67.

—We want to generate the position values in
between frames 22 and 67

— How?

The problem

* Imagine an animator wants an object to be
at position (-5,0,0) at frame 22 and at
position (5,0,0) at frame 67.

—We want to generate the position values in
between frames 22 and 67

— What is the animator also wants the object to
start at 0 velocity at frame 22 and accelerate
to reach a maximum speed at frame 34, and
finally stop at frame 67.

Interpolation Considerations

Interpolation vs. Approximation

+ Complexity (i.e. degree of the polynomial)
Continuity

Global vs. Local Control

Interpolation vs. Approximation

* Interpolated: curve passes through
control points

» Approximated guided by control points
but not necessarily passes through
them.

[
/\_/
o
Approximated
Interpolated

Continuity

» Parametric equations:
x=x(u), y=yu), z=zw), u<usu,
» Parametric continuity: Continuity properties of curve
segments.

— Zero order: Curves intersects at M

one end-point: C°

— First order: C° and curves has same N\

tangent at intersection: C'

— Second order: C°, C'and curves has r"‘\
same second order derivative: C?

Continuity

* Geometric continuity:
Similar to parametric continuity but only the direction
of derivatives are significant. For example derivative
(1,2) and (3,6) are considered equal.

» G° G', G?: zero order, first order, and second order
geometric continuity.




Global vs. Local Control

Local Control

Global Control

Spline Equations

» Cubic curve equations:
xw)=au’ +bu’ +cu+d,
yw)y=au’ +bu’ +eu+d, 0<u<l

zw)y=au’ +bu’ +cu+d,

a

x

x(u):[u3 u' u 1]~ i“ =U-C

d

* General form: x(u)=U-M,-M,
+ M_: spline transformation (blending functions)
M, geometric constraints (control points)

Natural Cubic Splines

* Interpolation of n+1 control points. n curve segments.
4n coefficients to determine

» Second order continuity. 4 equation for each of n-1
common points:

M=pp, %0 =p, 5 (1)=x,(0), x(1)=x,(0)

4n equations required, 4n-4 so far.
« Starting point condition, end point condition.

x(0)=p,, x,()=p,
* Assume second derivative 0 at end-points or add
phantom control points p_,, p

x(0)=0, x;(1)=0

n+1°

» Write 4n equations for 4n unknown coefficients and
solve.

» Changes are not local. A control point effects all
equations.

« Expensive. Solve 4n system of equations for
changes.

Hermite Interpolation

» End point constraints for each segment is given as:
P(0)=p,, PMD)=p,.; P'(0)=Dp,, P'())=Dp,,,

» Control point positions and first derivatives are given
as constraints for each end-point.

a a

. b b

P(u):[u] u' u 1]4 l”(u):[3uZ 2u 1 0]-

c c

d ld
P, 000 1][a al [o 0o 0o 1T [ p,
Pt || 1 1 114b b| |1 1 11 Piu
Dp, 001 0ffc ¢/ loo1o0 Dp,
Dp,,| [3 21 0f|d d| |3 2 1 0] [Dpy,

Hermite Interpolation

-1

a 00 01 P 2 -2 1 1 P P

bl |11 1 1] pey | _[=3 3 =2 -1)| pg, M| P
¢l 0010 Dp, 0 0 1 0]||Dp, "1 Dp,
d| [3 2 1 0| |Dp,, 1 0 0 0]|Dp,, Dp,,,

P(u)=p,(2u’ =3u* +1)+p,,, (=20’ +3u*)+ Dp, (u” - 2u” +u)+ Dp,,(u’ —u*)

These polynomials are called Hermite
blending functions, and tells us how to blend
boundary conditions to generate the position
of a point P(«) on the curve




Hermite blending functions

Hermite Interpolation

+ Segments are local. First order continuity
+ Slopes at control points are required.

» Catmull-Rom splines approximate slopes from
neighboring control points.

Catmull-Rom Splines

» The tangent at a point is computed as the
one-half of the two neighboring points

Pl = (1/2)-(Pry ~ P, )

Catmull-Rom Splines

-1 3 =3 1]||p:
1|2 -5 4 -1||p,
20-1 0 1 0l|p.,

0 2 0 0]|pse

P(u)=p, (-0.5¢° +u* = 0.5u) +p, (1.54> = 2.50° +1) +
P (—1.50% + 2u% +0.5u) +p,.,(0.54° - 0.5u%)

Bézier Curves

» A Bézier curve approximates any number of
control points for a curve section (degree of the
Bézier curve depends on the number of control
points and their relative positions)

Bézier Curves

P)=)"p,BEZ, ,(u), 0<u<l
k=0

_(n), - n)_ n!
BEZ @)= Jr =" = a—ny

» The coordinates of the control points are blended
using Bézier blending functions BEZ, ()

» Polynomial degree of a Bézier curve is one less than
the number of control points.
3 points : parabola
4 points : cubic curve
5 points : fourth order curve




Cubic Bézier Curves

» Most graphics packages provide Cubic Béziers.

BEZ,,=(1-u)’ BEZ, , =3u(l-u)’

BEZ, , =3u*(1-u) BEZ,, =u’
P
]”(u):[u1 o 1]»MBC7‘ P
.8
-1 3 -3 1] |ps
3 -6 3 0
M, =
-3 3 0 0
1 0 0 o0

Cubic Bézier blending
functions

BEZ, i Bz,
'R
multiplied with
P

EM
't %, multiplied with

\Po

wE multiplied with ~//

e/

The four Bézier blending functions for cubic curves (n=3, i.e. 4 control pts.)

Properties of Bézier curves
» Passes through start and end points

P(0)=p,, P =p,

« First derivates at start and end are:
P'(0) =-np, +np,
P'(1)=-np, , +np,

* Lies in the convex hull

Joining Bézier curves

- Start and end points are same (C°)

» Choose adjacent points to start and end in the same
line (C")

Py =P,

"

n
py=p,+—®,~P,.)
n

P N
[} N,
nand n’ are the number of kY
control points in the first and in the .
second curve segment respectively —

« C2 continuity is not generally used in cubic Bézier
curves. Because the information of the current
segment will fix the first three points of the next curve
segment

Controlling the speed

* Assume when we increase u 1 unit, we
move along the curve x units (arclength).
When we increase u 2 units, do we move
2x units on the curve?

Controlling the speed

» Assume when we increase u 1 unit, we
move along the curve x units (arclength).
When we increase u 2 units, do we move
2x units on the curve?

— NO. Because the position is non-linearly
dependent on u in cubic splines.
— For example, if u is the time parameter,m




Example

» For example, if u is the time parameter,
the following positions will be generated at
unit time intervals for a cubic curve

Solution

+ Solution to obtain a constant speed
— We need to reparameterize by the arclength

Time and Position

B
time = 10
time =0
[
[ D

time = 35 ) ®
time = G0

Computing the arch length

Pliy)

Plu)

LENGTH sy, 1)

u versus arc length

» We need to find the length of the curve
from its starting position for any given
parametric vale:

s =G(u)

« If we can compute G, then we can find
how much time it takes to move a certain
distance.

» But in general, there is no analytic solution

to the problems above, so numerical
techniques are used.

Using a table to calculate s = G(u)

Index Parametric Enery - Arc Lengeh (G Tndex Parametric Fnery Are Length (G)
[t 0.0 LhAHMY
1 0.55 0900
1 L05 (LOR0
12 1L60 0.920
.10 (150
3 .6 1937
3 15 230 I '{_‘ 932
i 0.20 1,320 14 0.70 05944
0.25 0400 15 0.75 0.959
'3 0,30 1500 16 0.80 0.972
0,35 (L6 17 0.8% 0,984
8 040 0720 18 0.90 0.994
u 45 L8 19 095 0.998
1 1,50 0,860 20 1.00 1.000




Finding the index closest to a given u

given parametric mkf:’ " Uﬁj
SEA T ¢ Eern eniries
distance between entries

i=( mr](

s 0573 2
= (int =4+ 0.5 =15
() o050

An estimation for s can be T(15) = 0.959. A better
approach is to use linear interpolation between
T(14) and T(15)

Finding the index closest to a given u

s (DH)[ given parametric :m’;r{'] _ (fm}[[)'ﬁ —3) = i
0.05

distance between entries

(GivenValue— Valuel i])
(Valueli+ 1] = Valueli])

(ArcLengthli+ 1] — ArcLength| i])
0.73-0.70
0.75-0.70

L

ArcLength|i] +

0.944 + - (0.959 — 0.944)

0.953

Solving the other problems using
the table
* Finding u=G!(s)
* Finding u, given 4, and s

Index Paramerric Eneey  Asc Lengrh (G) Index Parametric Entry - Arc Lengrh (G)
0,00 0000 1" 0.55 05000
1 005 01,080 12 060 0920
.10 0,150 13 0.65 0.932
015 L]
.1 2 ”
i .20 1320 .
15
5 5 1400
16 (IR (1) 2
& 0 0500
. 17 085 0.9%84
0,600
- 18 .90
& b L7
9
9 0800 ! ) 5
10 086 20 100 1.000

Adaptive subdivision

Speed Control

+ Specifying the speed along the curve

Dhistance
L=

T T T T T L i, 4 LiX
0.2 0.4 i 08 1
Time

Ease-in / Ease-out d(t)=(2-t)*t

Generating ease-in/ease-out by
sine curves

)
sin[ ¢ -2+ 1
\ 2/
s(#) = easelr) =




Ease-in/Ease-out alternative way

* Use high-school physics of motion

Ease-in/Ease-out alternative way

Curve fitting to position-time pairs

” e - 10 .
® time = I
time = 50

ome = 55

I

® e
time = 35 .

tme = (i)

Possible solution

» Using an interpolating piecewise spline

determine the piecewise P(u) equations

between control points

Determine the arc-length of the segments

by sampling u

« Compute the average velocity of the object
between intervals by arc-length/time

* Move at constant speeds (average
velocity) between intervals.

Path following

+ Apart from the position of the object, the
orientation of the object also has to be
considered.

Frenet Frame

+ If an object is moving along a path, the
orientation can be made directly
dependent on the properties of the curve
(i.e., tangent and curvature).

w = ()
u = Py x P(s)

v=wXu




Looking towards a Center of Interest

w = COI-POS
# = wX y-axis

v = uxXw

Key-Frame Systems

» Shape-interpolation

Piu) Qlv)

Frame f1 Frame f2

Specification of point
correspondences and interpolation
constraints

Animation Languages

+ Abilities:
— 1/O operations for graphical objects
— Support hierarchical composition of objects
— A time variable
— Interpolation functions
— Transformations
— Rendering-parameters
— Camera attributes
— Producing, viewing, and storing of one of more
frames of animation
» A program written in an animation language is
referred to as a script.

Articulation Variables

* AKA avar, track, or channel
 Associating the value of a variable with a
function (e.g., time)

Animation Languages

* Example:
— Alias/Wavefront’'s MEL

global proc emitAway()
l

emitter -pos 0 0 0 -type direction -sp 0.3 -name emit -r 50

particle -name spray:
connectDynamic -em emit spray
connectAttr emit.tx emitShape.dx;
connectAttr emit.ty emitShape.dy;
Attr emit.tz emitShape.dz;

conne
rename emit “emitAwayd#™:
rename spray “sprayAway#":

-spd 1




Another example: Houdini

= e




