Quaternions

- Quaternion representation both allow for interpolation between arbitrary orientations and for representation of a series of rotations

$$
\begin{gathered}
\operatorname{Rot}_{q}\left(\operatorname{Rot}_{p}(v)\right)=q^{-1} \cdot\left(p^{-1} \cdot v \cdot p\right) \cdot q \\
=\left((p q)^{-1} \cdot v \cdot(p q)\right) \\
=\operatorname{Rot}_{p q}(v) \\
\operatorname{Rot}^{-1}(\operatorname{Rot}(v))= \\
q \cdot\left(q^{-1} \cdot v \cdot q\right) \cdot q^{-1}=v
\end{gathered}
$$

Interpolation of Rotations using Quaternion Representation

O linearly interpolated intermediate points

- projection of intermediate points onto circle

Interpolation of Rotations using Quaternion Representation

$$
\cos \theta=q 1 \bullet q 2=s 1 \cdot s 2+v 1 \bullet v 2
$$

This week

- Recap on interpolation/approximation splines
- Natural Cubic Splines
- Hermite Interpolation
- Catmull-Rom Splines
- Bezier Curves
- Timing considerations
- Curve reparameterization by arclength
- Speed control
- Path following

The problem

- Imagine an animator wants an object to be at position $(-5,0,0)$ at frame 22 and at position $(5,0,0)$ at frame 67.
- We want to generate the position values in between frames 22 and 67
- How?

The problem

- Imagine an animator wants an object to be at position $(-5,0,0)$ at frame 22 and at position $(5,0,0)$ at frame 67.
- We want to generate the position values in between frames 22 and 67
- What is the animator also wants the object to start at 0 velocity at frame 22 and accelerate to reach a maximum speed at frame 34 , and finally stop at frame 67.

Interpolation Considerations

- Interpolation vs. Approximation
- Complexity (i.e. degree of the polynomial)
- Continuity
- Global vs. Local Control

Interpolation vs. Approximation

- Interpolated: curve passes through control points
- Approximated guided by control points but not necessarily passes through them.

Interpolated

Continuity

- Parametric equations:
$x=x(u), \quad y=y(u), \quad z=z(u), \quad u_{1} \leq u \leq u_{2}$
- Parametric continuity: Continuity properties of curve segments.
- Zero order: Curves intersects at
 one end-point: C^{0}
- First order: C^{0} and curves has same tangent at intersection: C^{1}
- Second order: $\mathrm{C}^{0}, \mathrm{C}^{1}$ and curves has
same second order derivative: C^{2}

Continuity

- Geometric continuity:

Similar to parametric continuity but only the direction of derivatives are significant. For example derivative $(1,2)$ and $(3,6)$ are considered equal.

- G^{0}, G^{1}, G^{2} : zero order, first order, and second order geometric continuity.

Global vs. Local Control

Global Control

Spline Equations

- Cubic curve equations:

$$
\begin{aligned}
& x(u)=a_{x} u^{3}+b_{x} u^{2}+c_{x} u+d_{x} \\
& y(u)=a_{y} u^{3}+b_{y} u^{2}+c_{y} u+d_{y} \\
& z(u)=a_{z} u^{3}+b_{z} u^{2}+c_{z} u+d_{z} \\
& x(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \cdot\left[\begin{array}{l}
a_{x} \\
b_{x} \\
c_{x} \\
d_{x}
\end{array}\right]=\mathbf{U} \cdot \mathbf{C}
\end{aligned}
$$

- General form: $x(u)=\mathbf{U} \cdot \mathbf{M}_{\mathbf{s}} \cdot \mathbf{M}_{g}$
- \mathbf{M}_{s} : spline transformation (blending functions) \mathbf{M}_{g} : geometric constraints (control points)
- Write $4 n$ equations for $4 n$ unknown coefficients and solve.
- Changes are not local. A control point effects all equations.
- Expensive. Solve $4 n$ system of equations for changes.

Hermite Interpolation

- End point constraints for each segment is given as:
$\mathbf{P}(0)=\mathbf{p}_{k}, \quad \mathbf{P}(1)=\mathbf{p}_{k+1}, \quad \mathbf{P}^{\prime}(0)=\mathbf{D p}_{k}, \quad \mathbf{P}^{\prime}(1)=\mathbf{D} \mathbf{p}_{k+1}$,
- Control point positions and first derivatives are given as constraints for each end-point.

$$
\left.\begin{array}{cc}
\mathbf{P}(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right] & \mathbf{P}^{\prime}(u)=\left[\begin{array}{lll}
3 u^{2} & 2 u & 1
\end{array} 0\right.
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right] \quad\left[\begin{array}{c}
\mathbf{p}_{k} \\
\mathbf{p}_{k+1} \\
\mathbf{D} \mathbf{p}_{k} \\
\mathbf{D} \mathbf{p}_{k+1}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right] \quad\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{p}_{k} \\
\mathbf{p}_{k+1} \\
\mathbf{D} \mathbf{p}_{k} \\
\mathbf{D} \mathbf{p}_{k+1}
\end{array}\right] .
$$

Hermite Interpolation

$\left[\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d}\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0\end{array}\right]^{-1} \cdot\left[\begin{array}{c}\mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{D p}_{k} \\ \mathbf{D} \mathbf{p}_{k+1}\end{array}\right]=\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{c}\mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{D p}_{k} \\ \mathbf{D p}_{k+1}\end{array}\right]=\mathbf{M}_{H} \cdot\left[\begin{array}{c}\mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{D} \mathbf{p}_{k} \\ \mathbf{D p}_{k+1}\end{array}\right]$
$\mathbf{P}(u)=\mathbf{p}_{k}\left(2 u^{3}-3 u^{2}+1\right)+\mathbf{p}_{k+1}\left(-2 u^{3}+3 u^{2}\right)+\mathbf{D} \mathbf{p}_{k}\left(u^{3}-2 u^{2}+u\right)+\mathbf{D} \mathbf{p}_{k+1}\left(u^{3}-u^{2}\right)$

These polynomials are called Hermite blending functions, and tells us how to blend boundary conditions to generate the position of a point $\mathbf{P}(u)$ on the curve

Hermite blending functions

Catmull-Rom Splines

- The tangent at a point is computed as the one-half of the two neighboring points

$$
P_{i}^{\prime}=(1 / 2) \cdot\left(P_{i+1}-P_{i-1}\right)
$$

Bézier Curves

- A Bézier curve approximates any number of control points for a curve section (degree of the Bézier curve depends on the number of control points and their relative positions)

Hermite Interpolation

- Segments are local. First order continuity
- Slopes at control points are required.
- Catmull-Rom splines approximate slopes from neighboring control points.

Bézier Curves

$$
\begin{aligned}
& \mathbf{P}(u)=\sum_{k=0}^{n} \mathbf{p}_{k} \mathrm{BEZ}_{k, n}(u), \quad 0 \leq u \leq 1 \\
& \mathrm{BEZ}_{k, n}(u)=\binom{n}{k} u^{k}(1-u)^{n-k}, \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

- The coordinates of the control points are blended using Bézier blending functions $\mathrm{BEZ}_{k, n}(u)$
- Polynomial degree of a Bézier curve is one less than the number of control points.
3 points : parabola
4 points : cubic curve
5 points : fourth order curve

Cubic Bézier Curves

- Most graphics packages provide Cubic Béziers.

$$
\begin{gathered}
\mathrm{BEZ}_{0,3}=(1-u)^{3} \\
\mathrm{BEZ}_{2,3}=3 u^{2}(1-u)
\end{gathered} \begin{aligned}
& \mathrm{BEZ}_{1,3}=3 u(1-u)^{2} \\
& \mathbf{P}(u)=\left[\begin{array}{cccc}
u^{3} & u^{2} & u & 1
\end{array}\right] \cdot \mathbf{M}_{\mathrm{Bez}} \cdot\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3,3}=u^{3}
\end{array}\right] \\
& \mathbf{M}_{\mathrm{Bez}}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Cubic Bézier blending functions

Properties of Bézier curves

- Passes through start and end points

$$
\mathbf{P}(0)=\mathbf{p}_{0}, \quad \mathbf{P}(1)=\mathbf{p}_{n}
$$

- First derivates at start and end are:

$$
\begin{aligned}
& \mathbf{P}^{\prime}(0)=-n \mathbf{p}_{0}+n \mathbf{p}_{1} \\
& \mathbf{P}^{\prime}(1)=-n \mathbf{p}_{n-1}+n \mathbf{p}_{n}
\end{aligned}
$$

- Lies in the convex hull

Joining Bézier curves

- Start and end points are same (C^{0})
- Choose adjacent points to start and end in the same line (C^{1})
$\mathbf{p}_{0^{\prime}}=\mathbf{p}_{n}$
$\mathbf{p}_{1^{\prime}}=\mathbf{p}_{n}+\frac{n}{n^{\prime}}\left(\mathbf{p}_{n}-\mathbf{p}_{n-1}\right)$
n and n^{\prime} are the number of control points in the first and in the second curve segment respectively
- C^{2} continuity is not generally used in cubic Bézier curves. Because the information of the current segment will fix the first three points of the next curve segment

Controlling the speed

- Assume when we increase $u 1$ unit, we move along the curve x units (arclength). When we increase $u 2$ units, do we move $2 x$ units on the curve?
- NO. Because the position is non-linearly dependent on u in cubic splines.
- For example, if u is the time parameter, m

Example

- For example, if u is the time parameter, the following positions will be generated at unit time intervals for a cubic curve

Solution

- Solution to obtain a constant speed
- We need to reparameterize by the arclength

Time and Position

u versus arc length

- We need to find the length of the curve from its starting position for any given parametric vale:

$$
s=G(u)
$$

- If we can compute G^{-1}, then we can find how much time it takes to move a certain distance.
- But in general, there is no analytic solution to the problems above, so numerical techniques are used.

Computing the arch length

$\operatorname{LENGTH}\left(u_{1}, u_{2}\right)$

Finding the index closest to a given u

$$
\begin{aligned}
i & =(\text { int })\left(\frac{\text { given parametric value }}{\text { distance between entries }}+0.5\right) \\
& =(\text { int })\left(\frac{0.73}{0.05}+0.5\right)=15
\end{aligned}
$$

An estimation for s can be $T(15)=0.959$. A better approach is to use linear interpolation between $T(14)$ and $T(15)$

Solving the other problems using the table

- Finding $u=G^{-1}(s)$
- Finding u_{2} given u_{1} and s

Index	Parametric Entry	Arc Length (G)	Index	Parametric Entry	Arc Lengt (G)
0	0.00	0.000	11	0.55	0.900
1	0.05	0.080	12	0.60	0.920
2	0.10	0.150	13	0.65	0.932
3	0.15	0.230	14	0.70	0.944
4	0.20	0.320	15	0.75	0.959
5	0.25	0.400	16	0.80	0.972
6	0.30 0.35	0.500	17	0.85	0.984
7 8	0.35 0.40	0.600 0.720	18	0.90	0.994
8 9	0.40 0.45	0.720 0.800	19	0.95	0.998
10	0.50	0.860	20	1.00	1.000

Speed Control

- Specifying the speed along the curve

Ease-in / Ease-out

$d(t)=(2-t)^{*} t$

Finding the index closest to a given u

$$
\begin{aligned}
i= & (\text { int })\left(\frac{\text { given parametric value }}{\text { distance between entries }}\right)=(\text { int })\left(\frac{0.73}{0.05}\right)=14 \\
L= & \text { ArcLength }[i]+\frac{(\text { GivenValue }- \text { Value }[i])}{(\text { Value }[i+1]-\text { Value }[i])} \\
& \cdot(\text { ArcLength }[i+1]-\text { ArcLength }[i]) \\
= & 0.944+\frac{0.73-0.70}{0.75-0.70} \cdot(0.959-0.944) \\
= & 0.953
\end{aligned}
$$

Generating ease-in/ease-out by sine curves

Sine curve segment to use as easc-in/casc-out
Sine curve segment mapped to useful values
control

$$
s(t)=\operatorname{aasc}(t)=\frac{\sin \left(t \cdot \pi-\frac{\pi}{2}\right)+1}{2}
$$

Ease-in/Ease-out alternative way

- Use high-school physics of motion
elociry

$v=v_{0} \cdot \frac{t}{t_{1}}$
$0.0<t<t_{1}$
$t_{1}<t<t_{2}$
$v=v_{0} \cdot\left(1.0-\frac{t-t_{2}}{1.0-t_{2}}\right) \quad t_{2}<t<1.0$

Ease-in/Ease-out alternative way

$d=r_{0} \cdot \frac{7}{2 \cdot i_{1}}$
$0.0<t<t_{1}$
$d=p_{0} \cdot \frac{t_{1}}{2}+v_{0} \cdot\left(t-t_{1}\right)$
$t_{1}<t<t_{2}$
$d=v_{0} \cdot \frac{t_{1}}{2}+v_{0} \cdot\left(t_{2}-t_{1}\right)+\left(v_{0}-\frac{\left(v_{0} \cdot \frac{t-t_{2}}{1-t_{2}}\right)}{2}\right) \cdot\left(t-t_{2}\right) \quad t_{2}<t<1.0$

Possible solution

- Using an interpolating piecewise spline determine the piecewise $\mathrm{P}(\mathrm{u})$ equations between control points
- Determine the arc-length of the segments by sampling u
- Compute the average velocity of the object between intervals by arc-length/time
- Move at constant speeds (average velocity) between intervals.

Path following

- Apart from the position of the object, the orientation of the object also has to be considered.

Frenet Frame

- If an object is moving along a path, the orientation can be made directly dependent on the properties of the curve (i.e., tangent and curvature).

Looking towards a Center of Interest

$$
\begin{aligned}
& w=C O I-P O S \\
& u=w \times y \text {-axis } \\
& v=u \times w
\end{aligned}
$$

Key-Frame Systems

- Shape-interpolation

Frame $f 1$

Frame $f 2$

Specification of point correspondences and interpolation constraints

Animation Languages

- Abilities:
- I/O operations for graphical objects
- Support hierarchical composition of objects
- A time variable
- Interpolation functions
- Transformations
- Rendering-parameters
- Camera attributes
- Producing, viewing, and storing of one of more frames of animation
- A program written in an animation language is referred to as a script.

Articulation Variables

- AKA avar, track, or channel
- Associating the value of a variable with a function (e.g., time)

Animation Languages

- Example:
- Alias/Wavefront's MEL
global proc emitAway()
I
emitter -pos 000 -type direction -sp 0.3 -name emit -r 50 -spd 1 particle -name spray;
connectDynamic -em emit spray
connectAttr emit.tx emitShape.dx;
connectAttr emit.ty emitShape.dy;
connectAttr emit.tz emitShape.dz;
rename emit "emitAwayif":
rename spray "sprayAway"
)

