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Quaternions

• Quaternion representation both allow for 

interpolation between arbitrary orientations 

and for representation of a series of 

rotations

Rotating Vectors Using 

Quaternions

Interpolation of Rotations using 

Quaternion Representation

Interpolation of Rotations using 

Quaternion Representation

CENG 732

Computer Animation

Spring 2006-2007

Week 3

Interpolation

This week

• Recap on interpolation/approximation 

splines

– Natural Cubic Splines

– Hermite Interpolation

– Catmull-Rom Splines

– Bezier Curves

• Timing considerations

– Curve reparameterization by arclength

– Speed control

• Path following
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The problem

• Imagine an animator wants an object to be 

at position (-5,0,0) at frame 22 and at 

position (5,0,0) at frame 67.

– We want to generate the position values in 

between frames 22 and 67

– How?

The problem

• Imagine an animator wants an object to be 

at position (-5,0,0) at frame 22 and at 

position (5,0,0) at frame 67.

– We want to generate the position values in 

between frames 22 and 67

– What is the animator also wants the object to 

start at 0 velocity at frame 22 and accelerate 

to reach a maximum speed at frame 34, and 

finally stop at frame 67.

Interpolation Considerations

• Interpolation vs. Approximation

• Complexity (i.e. degree of the polynomial)

• Continuity

• Global vs. Local Control

Interpolation vs. Approximation

• Interpolated: curve passes through 

control points

• Approximated guided by control points 

but not necessarily passes through 

them.

Interpolated
Approximated

Continuity

• Parametric equations:

• Parametric continuity: Continuity properties of curve 

segments.

– Zero order: Curves intersects at 

one end-point: C0

– First order: C0 and curves has same

tangent at intersection: C1

– Second order: C0 , C1 and curves has 

same second order derivative: C2
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Continuity

• Geometric continuity:

Similar to parametric continuity but only the direction 

of derivatives are significant. For example derivative 

(1,2) and (3,6) are considered equal.

• G0, G1, G2 : zero order, first order, and second order 

geometric continuity.
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Global vs. Local Control

Local Control

Global Control

Spline Equations
• Cubic curve equations:

• General form:

• M
s
: spline transformation (blending functions)             

M
g
: geometric constraints (control points)
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Natural Cubic Splines
• Interpolation of n+1 control points. n curve segments. 

4n coefficients to determine 

• Second order continuity. 4 equation for each of n-1 

common points:

4n equations required, 4n-4 so far.

• Starting point condition, end point condition.

• Assume second derivative 0 at end-points or add 

phantom control points p
-1

, p
n+1

.
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• Write 4n equations for 4n unknown coefficients and 

solve.

• Changes are not local. A control point effects all 

equations.

• Expensive. Solve 4n system of equations for 

changes.

Hermite Interpolation

• End point constraints for each segment is given as:

• Control point positions and first derivatives are given 

as constraints for each end-point.

,)1(,)0(,)1(,)0( 11 kkkk DpPDpPpPpP

d

c

b

a

P 1)( 23 uuuu

d

c

b

a

P 0123)( 2 uuu

d

c

b

a

Dp

Dp

p

p

0123

0100

1111

1000

1

1

k

k

k

k

1

1

1

0123

0100

1111

1000

k

k

k

k

Dp

Dp

p

p

d

c

b

a

Hermite Interpolation
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These polynomials are called Hermite
blending functions, and tells us how to blend
boundary conditions to generate the position

of a point P(u) on the curve
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Hermite blending functions Hermite Interpolation

• Segments are local. First order continuity

• Slopes at control points are required.

• Catmull-Rom splines approximate slopes from 

neighboring control points.

Catmull-Rom Splines

• The tangent at a point is computed as the 

one-half of the two neighboring points

Catmull-Rom Splines
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Bézier Curves

• A Bézier curve approximates any number of 

control points for a curve section (degree of the 

Bézier curve depends on the number of control 

points and their relative positions)

Bézier Curves

• The coordinates of the control points are blended 
using Bézier blending functions BEZk,n(u)

• Polynomial degree of a Bézier curve is one less than 
the number of control points.
3 points : parabola
4 points : cubic curve
5 points : fourth order curve
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Cubic Bézier Curves

• Most graphics packages provide Cubic Béziers.
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Cubic Bézier blending 

functions

The four Bézier blending functions for cubic curves (n=3, i.e. 4 control pts.)

p0 p1

multiplied with

multiplied withmultiplied with

multiplied with

p2
p3

Properties of Bézier curves

• Passes through start and end points

• First derivates at start and end are:

• Lies in the convex hull
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Joining Bézier curves
• Start and end points are same (C0)

• Choose adjacent points to start and end in the same 
line (C1)

• C2 continuity is not generally used in cubic Bézier
curves. Because the information of the current 
segment will fix the first three points of the next curve 
segment
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n and n’ are the number of
control points in the first and in the
second curve segment respectively

Controlling the speed

• Assume when we increase u 1 unit, we 

move along the curve x units (arclength). 

When we increase u 2 units, do we move 

2x units on the curve?

Controlling the speed

• Assume when we increase u 1 unit, we 

move along the curve x units (arclength). 

When we increase u 2 units, do we move 

2x units on the curve?

– NO. Because the position is non-linearly 

dependent on u in cubic splines.

– For example, if u is the time parameter,m
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Example

• For example, if u is the time parameter, 

the following positions will be generated at 

unit time intervals for a cubic curve

Solution

• Solution to obtain a constant speed

– We need to reparameterize by the arclength

Time and Position Computing the arch length

u versus arc length

• We need to find the length of the curve 
from its starting position for any given 
parametric vale:

s = G(u)

• If we can compute G-1, then we can find 
how much time it takes to move a certain 
distance.

• But in general, there is no analytic solution 
to the problems above, so numerical 
techniques are used.

Using a table to calculate s = G(u)
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Finding the index closest to a given u

An estimation for s can be T(15) = 0.959. A better

approach is to use linear interpolation between

T(14) and T(15) 

Finding the index closest to a given u

Solving the other problems using 

the table

• Finding u=G-1(s)

• Finding u2 given u1 and s

Adaptive subdivision

Speed Control

• Specifying the speed along the curve

Ease-in / Ease-out d(t)=(2-t)*t

Generating ease-in/ease-out by 

sine curves
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Ease-in/Ease-out alternative way

• Use high-school physics of motion

Ease-in/Ease-out alternative way

Curve fitting to position-time pairs Possible solution

• Using an interpolating piecewise spline
determine the piecewise P(u) equations 
between control points

• Determine the arc-length of the segments 
by sampling u

• Compute the average velocity of the object 
between intervals by arc-length/time

• Move at constant speeds (average 
velocity) between intervals. 

Path following

• Apart from the position of the object, the 

orientation of the object also has to be 

considered.

Frenet Frame

• If an object is moving along a path, the 

orientation can be made directly 

dependent on the properties of the curve 

(i.e., tangent and curvature).
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Looking towards a Center of Interest Key-Frame Systems

• Shape-interpolation

Specification of point 

correspondences and interpolation 

constraints
Animation Languages

• Abilities:
– I/O operations for graphical objects

– Support hierarchical composition of objects

– A time variable

– Interpolation functions

– Transformations

– Rendering-parameters

– Camera attributes

– Producing, viewing, and storing of one of more 
frames of animation

• A program written in an animation language is 
referred to as a script.

Articulation Variables

• AKA avar, track, or channel

• Associating the value of a variable with a 

function (e.g., time)

Animation Languages

• Example:

– Alias/Wavefront’s MEL
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Another example: Houdini


