CENG 732 Computer Animation

Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics

This week

- Shape Deformation
 FFD: Free Form Deformation
- Hierarchical Modeling of Articulated Objects
- Forward Kinematics
- Local Coordinate Frames

 Denavit-Hartenberg Notation
- Inverse Kinematics

- Initially construct a 2D grid around the object as a local coordinate system aligned with the global axes
 - Global to local transformation can be done by simple translate and scale
- Then distort the grid by moving the vertices of the grid.
 - This will distort the local coordinate system and hence the vertices of the object will be relocated in the global coordinate system

Free-Form Deformation

- 3D extension of the 2D grid deformation technique
- Usually cubic interpolation is used instead of linear interpolation
- A local coordinate system is defined by S,T,U vectors (and an origin)
 - S,T,U are not necessarily orthogonal
- S,T,U axes are uniformly divided into a grid to facilitate manipulation of the coordinate system

Hierarchical Kinematic Modeling

- · Kinematics:
 - Studying the movement of objects without considering the forces involved in producing the movement
- Dynamics

 Studying the underlying forces that produce the movement
- · Hierarchical modeling

 Organizing objects in a treelike structure and specifying movement parameters between their components

Simple vs. Complex Joints

- Joints that allow motion in one directions have one degree of freedom
- Complex joints have more degrees of freedom and they can be represented as a series simple joints connected to each other by zero length links.
 - Examples:
 - Ball-and-socket joint (3 DOF)
 - Planar joint (2 DOF)

Forward Kinematics

- Finding the location (and orientation) of the end effector(s) by applying all the joint transformations sequentially
 - All the intermediate joint angles are given by the user
- Depth-first tree traversal of the tree representations and a stack to store intermediate composition of transformation matrices is used
 - OpenGL's pushMatrix/popMatrix functions can be used easily to accomplish this

Local Coordinate Frames

- Denavit-Hartenberg Notation from robotics
- A local coordinate frame around a joint is represented by four variables:
 - Link offset
 - Joint angle
 - Link length
 - Link twist

Denavit-Hartenberg Parameters

Table 4.1 Denavit-Hartenberg Joint Parameters for Joint i	
---	--

Name	Symbol	Description
Link offset	d_i	distance from x_{i-1} to x_i along z_i
Joint angle	Θ_i	angle between x_{i-1} and x_i about z_i
Link length	a_i	distance from z_i to z_{i+1} along x_i
Link twist	α_i	angle between z_i and z_{i+1} about x_i

The Jacobian

- In many complex joints however, such analytic solutions are not possible.
- Therefore we use the Jacobian matrix to find the correct joint angle increments that will lead us to the final end effector configuration
- The Jacobian matrix is a matrix of partial derivatives
 - Each entry shows how much the change in an input parameter effects an output parameter

Inverse Kinematics Videos

- <u>Video 1</u>
- <u>Video 2</u>