CENG 732
Computer Animation

Spring 2006-2007
Week 4
Shape Deformation
Animating Articulated Structures:
Forward Kinematics/Inverse Kinematics

Warping an Object

+ Displace one vertex of an object

— And as a consequence make neighbor
vertices move with the displaced vertex

This week

Shape Deformation
— FFD: Free Form Deformation

+ Hierarchical Modeling of Articulated
Objects

* Forward Kinematics

* Local Coordinate Frames
— Denavit-Hartenberg Notation

 Inverse Kinematics

Warping an Object

+ Displace one vertex of an object

— And as a consequence make neighbor
vertices move with the displaced vertex

Warping an Object

» Use an attenuation function to determine
the amount of displacement for the other
vertices:
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2D Grid Deformation

« Initially construct a 2D grid around the
object as a local coordinate system aligned
with the global axes
— Global to local transformation can be done by

simple translate and scale

» Then distort the grid by moving the vertices
of the grid.

— This will distort the local coordinate system and
hence the vertices of the object will be
relocated in the global coordinate system




2D Grid Deformation

» The location of the object vertex is found
using bilinear interpolation

2D Grid Deformation

* Initial grid
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2D Grid Deformation

» Deformed grid

2D Grid Deformation

* Bilinear interpolation
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Global Deformations

» Apply a 3x3 transformation matrix to all the
vertices of an object

Global Deformations

+ Global tapering
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Global Deformations

» Twist about an axis
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Free-Form Deformation

+ 3D extension of the 2D grid deformation

technique

Usually cubic interpolation is used instead

of linear interpolation

* A local coordinate system is defined by
S,T,U vectors (and an origin)
—8,T,U are not necessarily orthogonal

+ §,T,U axes are uniformly divided into a grid
to facilitate manipulation of the coordinate
system

Free-Form Deformation

» Locating a point in the local coordinate

system
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Free-Form Deformation

* Grid of control points

Free-Form Deformation

 Bezier interpolation is used two find the
deformed global coordinate of the object
vertex, given the global coordinates of the
grid control points
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FFD composition

» Sequential composition
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FFD composition

* Hierarchical composition
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Animation using FFDs

* Moving a distorted grid over an object

Animation using FFDs

* An object moving through a deformed space

Hierarchical Kinematic Modeling

* Kinematics:

— Studying the movement of objects without
considering the forces involved in producing the
movement

* Dynamics

— Studying the underlying forces that produce the

movement
* Hierarchical modeling

— Organizing objects in a treelike structure and
specifying movement parameters between their
components

Some definitions

« Articulated objects

— Hierarchical objects connected end to end to form
multibody jointed chains

— Manipulators: a sequence of objects connected in a
chain by joints. Example: robot arm
» The rigid objects between joints are called links.
The last link in a series of links is called the end
effector (e.g. the hand of a robot arm)

* The local coordinate system associated with
each joint is referred to as the frame.

Types of joints
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Simple vs. Complex Joints

« Joints that allow motion in one directions
have one degree of freedom

» Complex joints have more degrees of
freedom and they can be represented as a
series simple joints connected to each
other by zero length links.

— Examples:
+ Ball-and-socket joint (3 DOF)
* Planar joint (2 DOF)

Ball-and-socket joint

Ball-anid-socket joint

rero-length Bkapes

Planar joint
—

Plarar joint

semdengrh linkage

Hierarchical Models

Represented as trees

— Nodes connected by arcs

The highest node of the tree is called the root
node which corresponds to the root object
whose position is known in the global coordinate
system

The position of an intermediate node in the tree
can be found by position of the root node and
the transformations on the path from root to that
node

» Nodes represent object parts (i.e., links)

+ Arcs represent joints

Information stored in nodes and arcs

Are, .
’ Arc; contains

+ constant transformation of Link, to
its neutral position relarive to Link,_,

« variable transformation responsible
Node; contains for articulating Link;
+ a transformation to be applied ro

object data to position it so its

point of roration is ar the ',' '
origin (optional) I '
+ object data i '
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O roor

PR

root node

oL arc

|
1
1
1
1
]
|
1
'

Ariculared fipure Abstract hierarchical
representation
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An example
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Positions of vertices
+ Are found by traversing the tree from top

to bottom and concatenating the
transformations at the joints
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Two appendages
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Forward Kinematics

* Finding the location (and orientation) of
the end effector(s) by applying all the joint
transformations sequentially
— All the intermediate joint angles are given by

the user

» Depth-first tree traversal of the tree
representations and a stack to store
intermediate composition of transformation
matrices is used

— OpenGL’s pushMatrix/popMatrix functions
can be used easily to accomplish this

Local Coordinate Frames

* Denavit-Hartenberg Notation from robotics
* A local coordinate frame around a joint is
represented by four variables:
— Link offset
—Joint angle
— Link length
— Link twist

Simple case

* When two successive joints and the axis
of rotation are co-planar

— Link offset and link twist is zero

General case

Toint, Toint,,

Denavit-Hartenberg Parameters

Table 4.1 Denavit-Hartenberg Joint Parameters for Joint 7
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Link offset d; distance from x;_; to x; along z
_'Ui[][ J[]g{k‘ 91' :lng](‘ l)CE\VCC|1 x',71 'Jnd 'C'r 21110“[ Z,:
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Link twist o; angle between z; and z;,; about x;

Relating two successive frames

Table 4.2 Parameters That Relate the ith Frame and the 7+ 1 Frame

Name Symbol  Description Serew Transformation
Link offser iy distance from ;10 5, along 2, relative 1 2,

Joint angle B angle between x; and x;,y abour 2; relative w z;,

Link length & distance from 2;to 2, along x; relative to x;

Link vwist [+ 8 angle between z;and 2, about x; relative w

Vi = Ti(a) Ry(o,) T(d; VR, (8,, DV
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A simple example

Joint/ Paramerer Link Displacement Joint Angle Link Length Link Twist
A 0 B4 0 0
B 0 tg LA 0
o ] B, LE 0

A Ball-and-socket joint

Joint Parameters

Joint/ Paramerer Link Displacement  Joint Angle Link Length Link Twisi
A 0 84 0 0
Bl 0 P LA 90
B2 0 90 + B, 0 90
B3 0 0 0 0
c 0 0, LB 0

Inverse Kinematics

» Find the intermediate joint angles given
the position and orientation of the end
effector
— Some constraints may also be given

« E.g., joint angles in a range
» There may be no solutions

Analytic computation for simple cases

Configurarion

Given (x,y) coordinate of the end point of the end effector, compute 6, and 6,

— Overconstrained
* There may be multiple solutions
— Underconstrained
Solution
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The Jacobian

* In many complex joints however, such
analytic solutions are not possible.

» Therefore we use the Jacobian matrix to
find the correct joint angle increments that
will lead us to the final end effector
configuration

» The Jacobian matrix is a matrix of partial
derivatives

— Each entry shows how much the change in an
input parameter effects an output parameter

Example Jacobian
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Example Jacobian
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Using the Jacobian

V=g, o.e.0.0. 0]

0 = [0,,0,05....0,1"
V= f0)0 dv, dv, dv,
1., .
J V=29 dv, (-).“: r_)r'l_

J= |38, 38, " 9,

dJo, dw, do,

Computing the Jacobian

ar velocity of ith joing

A simple example

* Assume we want to find the change in the
rotation angles to get the end effector to G
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Effect of changing 0s

The equation

(G-F),
(G- F),
(G-E).

(0,0, 1)x E), (0,0.1)x(E=Py) (0.0, )x(E=D) | g,
= (0,0, )% E), (0,0, D)x(E=P) (0,0, 1)x (E=-Py) | -6,
((0,0,1)x E). (0,0, 1)< (E=Py) (0.0, 1)x(E=-P,) | |8,

Solving for 0s

If J is not a square matrix

» Use the pseudo-inverse to compute the
joint angles

V=76

J'v=778

G v=g e
J'V=290

Inverse Kinematics Videos

Video 1
Video 2
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