

Warping an Object

- Use an attenuation function to determine the amount of displacement for the other vertices:

$$
\begin{aligned}
S(i) & =1.0-\left(\frac{i}{n+1}\right)^{k+1} \quad k \geq 0 \\
& =\left(1.0-\left(\frac{i}{n+1}\right)\right)^{-k+1} \quad k<0
\end{aligned}
$$

This week

- Shape Deformation
- FFD: Free Form Deformation
- Hierarchical Modeling of Articulated Objects
- Forward Kinematics
- Local Coordinate Frames
- Denavit-Hartenberg Notation
- Inverse Kinematics

Warping an Object

- Displace one vertex of an object
- And as a consequence make neighbor vertices move with the displaced vertex

2D Grid Deformation

- Initially construct a 2D grid around the object as a local coordinate system aligned with the global axes
- Global to local transformation can be done by simple translate and scale
- Then distort the grid by moving the vertices of the grid.
- This will distort the local coordinate system and hence the vertices of the object will be relocated in the global coordinate system

2D Grid Deformation
- The location of the object vertex is found
using bilinear interpolation

2D Grid Deformation

- Bilinear interpolation

$P u 0=(1-u) \cdot P 00+u \cdot P 10$
$P u 1=(1-u) \cdot P 01+u \cdot P 11$
$P u v=(1-v) \cdot P u 0+v \cdot P u 1$
$=(1-u) \cdot(1-v) \cdot P 00+(1-u) \cdot v \cdot P 01+u \cdot(1-v) \cdot P 10+u \cdot v \cdot P 11$

Global Deformations

- Apply a 3×3 transformation matrix to all the vertices of an object

Global Deformations

- Twist about an axis

Free-Form Deformation

- 3D extension of the 2D grid deformation technique
- Usually cubic interpolation is used instead of linear interpolation
- A local coordinate system is defined by $\mathrm{S}, \mathrm{T}, \mathrm{U}$ vectors (and an origin)
- S,T,U are not necessarily orthogonal
- S,T,U axes are uniformly divided into a grid to facilitate manipulation of the coordinate system

Free-Form Deformation

- Grid of control points

$$
P_{i j k}=P_{0}+\frac{i}{l} \cdot S+\frac{j}{m} \cdot T+\frac{k}{n} \cdot U
$$

FFD composition

- Sequential composition

Fuldipe

FFD composition

- Hierarchical composition

Animation using FFDs

- An object moving through a deformed space

Some definitions

- Articulated objects
- Hierarchical objects connected end to end to form multibody jointed chains
- Manipulators: a sequence of objects connected in a chain by joints. Example: robot arm
- The rigid objects between joints are called links. The last link in a series of links is called the end effector (e.g. the hand of a robot arm)
- The local coordinate system associated with each joint is referred to as the frame.

Animation using FFDs

- Moving a distorted grid over an object

Hierarchical Kinematic Modeling

- Kinematics:
- Studying the movement of objects without considering the forces involved in producing the movement
- Dynamics
- Studying the underlying forces that produce the movement
- Hierarchical modeling
- Organizing objects in a treelike structure and specifying movement parameters between their components

Simple vs. Complex Joints

- Joints that allow motion in one directions have one degree of freedom
- Complex joints have more degrees of freedom and they can be represented as a series simple joints connected to each other by zero length links.
-Examples:
- Ball-and-socket joint (3 DOF)
- Planar joint (2 DOF)

Ball-and-socket joint

Ball-and-socket joint

Hierarchical Models

- Represented as trees
- Nodes connected by arcs
- The highest node of the tree is called the root node which corresponds to the root object whose position is known in the global coordinate system
- The position of an intermediate node in the tree can be found by position of the root node and the transformations on the path from root to that node
- Nodes represent object parts (i.e., links)
- Arcs represent joints

A hierarchical model

Positions of vertices

- Are found by traversing the tree from top to bottom and concatenating the transformations at the joints

$$
\begin{aligned}
& V_{0}^{\prime}=T_{0} \cdot V_{0} \\
& V_{1}^{\prime}=T_{0} \cdot T_{1} \cdot V_{1} \\
& V_{1.1}^{\prime}=T_{0} \cdot T_{1} \cdot T_{1.1} \cdot V_{1.1}
\end{aligned}
$$

Forward Kinematics

- Finding the location (and orientation) of the end effector(s) by applying all the joint transformations sequentially
- All the intermediate joint angles are given by the user
- Depth-first tree traversal of the tree representations and a stack to store intermediate composition of transformation matrices is used
- OpenGL's pushMatrix/popMatrix functions can be used easily to accomplish this

Simple case

- When two successive joints and the axis of rotation are co-planar
- Link offset and link twist is zero

General case

Relating two successive frames

Table 4.2	Parameters That Relate the i th Frame and the $i+1$ Frame			
Name	Symbol	Description	Screw Transformation	
Link offser	d_{i+1}	distance from x_{i} to x_{i+1} along z_{i+1}	relative to z_{i+1}	
Joint angle	θ_{i+1}	angle between x_{i} and x_{i+1} about z_{i+1}	relative to z_{i+1} Link lengtha_{i}	distance from z_{i} to z_{i+1} along x_{i}

Inverse Kinematics

- Find the intermediate joint angles given the position and orientation of the end effector
- Some constraints may also be given
- E.g., joint angles in a range
- There may be no solutions
- Overconstrained
- There may be multiple solutions - Underconstrained

The Jacobian

- In many complex joints however, such analytic solutions are not possible.
- Therefore we use the Jacobian matrix to find the correct joint angle increments that will lead us to the final end effector configuration
- The Jacobian matrix is a matrix of partial derivatives
- Each entry shows how much the change in an input parameter effects an output parameter

Example Jacobian

$x_{1}=r \sin \phi \cos \theta$
$x_{2}=r \sin \phi \sin \theta$
$x_{3}=r \cos \phi$
$J_{F}(r, \phi, \theta)=\left[\begin{array}{lll}\frac{\partial x_{1}}{\partial r} & \frac{\partial x_{1}}{\partial \phi} & \frac{\partial x_{1}}{\partial \theta} \\ \frac{\partial x_{2}}{\partial r} & \frac{\partial x_{2}}{\partial \phi} & \frac{\partial x_{2}}{\partial \theta} \\ \frac{x_{3}}{\partial r} & \frac{\partial x_{3}}{\partial \phi} & \frac{\partial x_{3}}{\partial \theta}\end{array}\right]=\left[\begin{array}{ccc}\sin \phi \cos \theta & r \cos \phi \cos \theta & -r \sin \phi \sin \theta \\ \sin \phi \sin \theta & r \cos \phi \sin \theta & r \sin \phi \cos \theta \\ \cos \phi & -r \sin \phi & 0\end{array}\right]$.

Using the Jacobian

$$
\begin{aligned}
& V=\left[\nu_{x}, v_{y}, v_{z}, \omega_{x}, \omega_{y}, \omega_{z}\right]^{T} \\
& \dot{\theta}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}, \ldots, \dot{\theta}_{n}\right]^{T}
\end{aligned}
$$

$V=J(\theta) \dot{\theta}$
$J^{-1} V=\dot{\theta}$

$$
J=\left[\begin{array}{cccc}
\frac{\partial v_{x}}{\partial \theta_{1}} & \frac{\partial v_{x}}{\partial \theta_{2}} & \cdots & \frac{\partial v_{x}}{\partial \theta_{n}} \\
\frac{\partial v_{y}}{\partial \theta_{1}} & \frac{\partial v_{y}}{\partial \theta_{2}} & \cdots & \frac{\partial v_{y}}{\partial \theta_{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial \omega_{z}}{\partial \theta_{1}} & \frac{\partial \omega_{z}}{\partial \theta_{2}} & \cdots & \frac{\partial \omega_{z}}{\partial \theta_{n}}
\end{array}\right]
$$

Computing the Jacobian

E-end effector
Linear velocity, $Z_{i} \times\left(E-J_{i}\right)$
J_{i} - th joint
Z_{1}-ith joint axis
ω_{i}-angular velocity of j th joint

A simple example

- Assume we want to find the change in the rotation angles to get the end effector to G

If J is not a square matrix

- Use the pseudo-inverse to compute the joint angles

$$
\begin{aligned}
& V=J \dot{\theta} \\
& J^{T} V=J^{T} J \dot{\theta} \\
& \left(J^{T} J\right)^{-1} J^{T} V=\left(J^{T} J\right)^{-1} J^{T} J \dot{\theta} \\
& J^{+} V=\dot{\theta}
\end{aligned}
$$

Inverse Kinematics Videos

- Video 1
- Video 2

