

Inverse Kinematics

- Find the intermediate joint angles given the position and orientation of the end effector
- Some constraints may also be given
- E.g., joint angles in a range
- There may be no solutions
- Overconstrained
- There may be multiple solutions
- Underconstrained

This week

- Inverse Kinematics (continued)
- Rigid Body Simulation
- Bodies in free fall
- Bodies in contact

The Jacobian

- In many complex joints however, such analytic solutions are not possible.
- Therefore we use the Jacobian matrix to find the correct joint angle increments that will lead us to the final end effector configuration
- The Jacobian matrix is a matrix of partial derivatives
- Each entry shows how much the change in an input parameter effects an output parameter

If J is not a square matrix

- Use the pseudo-inverse to compute the joint angles

$$
\begin{aligned}
& V=J \dot{\theta} \\
& J^{T} V=J^{T} J \dot{\theta} \\
& \left(J^{T} J\right)^{-1} J^{T} V=\left(J^{T} J\right)^{-1} J^{T} J \dot{\theta} \\
& J^{+} V=\dot{\theta}
\end{aligned}
$$

Solving for θ s

$$
\begin{aligned}
& V=j \dot{\theta} \\
& J^{-1} V=\dot{\theta}
\end{aligned}
$$

Adding Constraints

- Define H as:

$$
H=\sum_{i=1}^{n} \alpha_{i} \cdot\left(\theta_{i}-\theta_{c i}\right)^{\psi}
$$

where θ_{i} is the current joint angle of joint i θ_{ci} is the desired joint angle for joint i α_{i} is the desired angle gain (the higher it is the more difficult to move the joint away from the desired joint angle)

Adding Constraints

- Define z as the gradient of H :

$$
z=\nabla_{\theta} H=\frac{d H}{d \theta}=\psi \sum_{i=1}^{n} \alpha_{i} \cdot\left(\theta_{i}-\theta_{c i}\right)^{\psi-1}
$$

we are going to add control expression involving z to our solution. Adding the control expression to the solution will not affect the end effector's motion

Effect of the control expression

$$
\begin{aligned}
\dot{\theta} & =\left(J^{+} J-I\right) z \\
V & =J \dot{\theta} \\
V & =J\left(J^{+} J-I\right) z \\
V & =\left(J J^{+} J-J\right) z \\
V & =(J-J) z \\
V & =0 \cdot z \\
V & =0
\end{aligned}
$$

> Solving for θ s with the control \quad expression
> $\dot{\theta}=J^{+} V+\left(J^{+} J-I\right) \nabla_{\theta} H$
> $\dot{\theta}=J^{+} V+\left(J^{+} J-I\right) \nabla_{\theta} H$
> $\dot{\theta}=J^{+} V+J^{+} J \nabla_{\theta} H-I \nabla_{\theta} H$
> $\dot{\theta}=J^{+}\left(V+J \nabla_{\theta} H\right)-\nabla_{\theta} H$
> $\dot{\theta}=J^{T}\left(J J^{T}\right)^{-1}\left(V+J \nabla_{\theta} H\right)-\nabla_{\theta} H$
> $\dot{\theta}=J^{T}\left[\left(J J^{T}\right)^{-1}\left(V+J \nabla_{\theta} H\right)\right]-\nabla_{\theta} H$

Rigid Body Simulation

- Reaction of rigid bodies to forces such as:
- Gravity
- Viscosity
- Friction
- Forces from collisions
- Wind
- When applied to objects, these forces induce linear and angular accelerations

Physics Primer

- Read Appendix B. 6 (pages 476-488) from the text book for equation that are needed from simple physics simulation

Bodies in Free Fall	
$x(t+\Delta t)=x(t)+v(t) \cdot \Delta t$	Position update when the velocity
is constant	
$v(t+\Delta t)=v(t)+a(t) \cdot \Delta t$	
$x(t+\Delta t)=x(t)+((v(t)+v(t+\Delta t)) / 2) \cdot \Delta t$	
$x(t+\Delta t)=x(t)+v(t) \cdot \Delta t+\frac{1}{2} \cdot a(t) \cdot \Delta t^{2}$	

A simple example

- Consider a point at $(0,0)$ with initial velocity of $(100,100)$ feet per second
- Gravity: $(0,-32)$ feet per second per second
- We want to compute the position every $1 / 30$ seconds (to generate an animation of 30 frames per second)
- We are going to compute the beginning and ending velocities for each time interval, and use the average of these velocities to update the position of the point

Acceleration

- In real life, the forces change as the rigid body changes its position, orientation, and velocity over the time.
- It is not the best approach to use the acceleration at the beginning of the time interval to compute the velocity at the end (known as Euler integration)

Rotational Motion

- For non-point objects, the mass extent of the object should be considered
- Angular velocity
- is the rate at which the object is rotating irrespective of its linear velocity
- the direction of the vector gives the axis of orientation
- the magnitude gives the revolutions per unit time

Linear Velocity of a Rotating Point

$\dot{r}(t)=\omega(t) \times r(t)$
$|\dot{r}(t)|=|\omega(t)| r(t) \mid \sin \theta$

Angular Velocity

Two revolutions per second

Two revolutions per second

Angular velocities are the same (but the instantaneous linear velocities are different)

Center of Mass

- If mass values are provided on some discrete points on the object (i.e. vertices), the total mass and the center of mass is given by

$$
\begin{aligned}
& M=\sum m_{i} \\
& x(t)=\frac{\sum m_{i} q_{i}(t)}{M}
\end{aligned}
$$

Rotating Objects

- The linear velocity of a point on a rotating object

$$
\dot{q}(t)=\omega(t) \times(q(t)-x(t))+v(t)
$$

Forces

- Linear force
$F=m \cdot a \quad F(t)=\Sigma f_{i}(t)$
$a=F / m$
- Torque

$$
\begin{aligned}
& \tau_{t}(t)=(q(t)-x(t)) \times f_{i}(t) \\
& \tau(t)=\Sigma \tau_{t}(t)
\end{aligned}
$$

Linear Momentum
$p=m \cdot v$
$P(t)=\Sigma m_{i} \dot{q}_{i}(t)$
$P(t)=M \cdot v(t)$
$\dot{P}(t)=M \cdot \dot{v}(t)=F(t)$

Angular Momentum

$$
\begin{aligned}
L(t) & =\Sigma\left((q(t)-x(t)) \times m_{i} \cdot(q(t)-v(t))\right) \\
& =\Sigma\left(R(t) q \times m_{i} \cdot(\omega(t) \times(q(t)-x(t)))\right) \\
& =\Sigma\left(m_{i} \cdot(R(t) q \times(\omega(t) \times R(t) q))\right) \\
\dot{L}(t) & =\tau(t)
\end{aligned}
$$

Inertia Tensor

- The matrix that describes the distribution of an object's mass in space.

$$
\begin{gathered}
I_{\text {object }}=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{x y} & I_{y y} & I_{y z} \\
I_{x z} & I_{y z} & I_{z z}
\end{array}\right] \\
I_{x x}=\sum m_{i} \cdot\left(y_{i}^{2}+z_{i}^{2}\right) \\
I_{x y}=\sum m_{i} \cdot x_{i} \cdot y_{i} \\
I_{y y}=\Sigma m_{i} \cdot\left(x_{i}^{2}+z_{i}^{2}\right) \\
I_{x z}=\sum m_{i} \cdot x_{i} \cdot z_{i} \\
I_{z z}=\sum m_{i} \cdot\left(x_{i}^{2}+y_{i}^{2}\right) \\
I_{y z}=\sum m_{i} \cdot y_{i} \cdot z_{i}
\end{gathered}
$$

Inertia Tensor of a Rotated Object

$$
I(t)=R(t) I_{\mathrm{object}} R(t)^{T}
$$

Summing up all together

- An object's state vector
$S(t)=\left[\begin{array}{c}x(t) \\ R(t) \\ P(t) \\ L(t)\end{array}\right] \quad \frac{d}{d t} S(t)=\frac{d}{d t}\left[\begin{array}{c}x(t) \\ R(t) \\ P(t) \\ L(t)\end{array}\right]=\left[\begin{array}{c}v(t) \\ \omega(t) R(t) \\ F(t) \\ \tau(t)\end{array}\right]$

Bodies in Contact

- Collision
- Both kinematic and dynamic components
- Kinematic: Do determine whether two objects collide or not. Only dependent on the position and orientations of the objects and how they change over time
- Dynamic: What happens after collision, what forces are exchanged, how do they affect objects' motions

Collision handling

- Kinematic response
- Take actions after the collision occurs (the penalty method)
- Back up time to the first instant the collision occurs and determine the appropriate response

Kinematic Response

- Particle-Plane collision

$$
E(p)=a \cdot x+b \cdot y+c \cdot z+d
$$

Kinematic Response

- Particle's position is computed at every time step (particle is moving at a constant speed)

$$
p\left(t_{i}\right)=p\left(t_{i-1}\right)+\partial t \cdot v_{\text {ave }}(t)
$$

when $E\left(p\left(t_{i}\right)\right) \leq 0$ we understand that the particle has collided with the plane in the time interval t_{i-1} and t_{i}.

Kinematic Response

- When collision is detected, the component of the velocity vector in the normal direction is negated by subtracting it twice from the original velocity vector.
- To model the loss of energy during collision a damping factor $0<k<1$ is multiplied with the normal component when it is subtracted the second time

$$
\begin{aligned}
v\left(t_{i+1}\right) & =v\left(t_{i}\right)-v\left(t_{i}\right) \cdot N-k \cdot v\left(t_{i}\right) \cdot N \\
& =v\left(t_{i}\right)-(1+k) \cdot v\left(t_{i}\right) \cdot N
\end{aligned}
$$

Kinematic Response

