CENG 732 Computer Animation

Spring 2006-2007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, **Facial Animation**

This week

- · Modeling the arm - Different joint structures
- Walking
- Facial Animation

Challenges in Human Modeling

- Human figure is a very familiar form
- Human form is very complex
 - About 200 degrees of freedom
 - Some of the parts are deformable
- · Humanlike motion is not computationally well defined
 - There is no one definitive motion that is humanlike
 - Different characteristics for different people

Terms Related to Human Body Animation

- Sagittal plane
- Perpendicular to the ground and divides the body into right and left halves
- Coronal plane
- Perpendicular to the ground and divides the body into front and back halves Transverse plane
- Parallel to the ground and divides the body into top and bottom halves Distal
- Away from the attachment of the limb Proximal
- Toward the attachment of the limb
- Flexion
- Movement of the joint that decreases the angle between two bones Extension Movement of the joint that increases the angle between two bones

Modeling the Arm: Reaching and Grasping

- · To simplify the modeling process, it is usually assumed that the arm operates independently from the other body parts
 - not realistic
 - to provide realism one can add additional joints in a preprocessing step and position the body and make it ready for the independently considered arm motion

Basic Arm Model

- Sometimes the forearm is modeled differently. Because in reality the forearm rotation is not associated with a localized joint.
 - The two forearm bones rotate around each other.
 - We can associate this rotation with the elbow or the wrist, or sometimes a virtual joint in the middle is used to handle forearm rotation

Basic Arm Joint Limits

- · In reality each joint has specific limits
 - Example: the elbow flexes at most to 20 degrees and extends to 160 degrees
- Some of these limits depend on the situation
 - Example: It is difficult to fully extend the knee when one is bending at the hip

Inverse Kinematics The Jacobian technique can be used and the solution can be biased towards desired joint angles.

- To produce more humanlike motion the Jacobian can be replaced by a procedural approach
 - The joints farther away from the hand has more effect on the position of the hand
 - The joints closer to the hand are used to perform fine orientation changes

Simpler Coordinated Movement

• The model can be complex to provide detailed high quality hand model. But, one can coordinate the movement of the joints using a single grasping parameter.

Coordinated Movement

- Modeling interjoint cooperation is not easy – Example:
 - Stretch out your arm to the side, face palm up
 - Rotate the hand so the palm is facing down
 - Continue rotation so that the pals is facing up again
 - Which joints are involved? Moving the torso makes it easier?
 - Body parts cooperate to relieve muscle strain or maintain equilbrium

Reaching Around Obstacles

- The volume of space swept by the limb should not intersect with the obstacles in a scene
- Several path planning algorithms have been developed

Strength

- Strength may be incorporated into the motion planning of the arm
- For underconstrained problems (i.e., problems with many solutions), the solution space can be searched for the configurations which places least amount of strain on the figure
 - Strain can be computed by computing the torque at each joint
 - Comfort is defined as the ratio of the currently requested torque and the maximum possible torque

Walking

- It is a cyclic motion

 Acyclic components
 Turning, tripping
- Responsible for transportation of the body and maintaining balance
- Dynamics is more important in walking
- Walking is dynamically stable, but it is not statically stable
 - E.g., When a body freezes in the middle of the walk, it may fall on the ground

• Kinematics can be used for the general walking motion and forces may be computed to determine the motion of the upper body

Facial Models

- · Acquisition of the geometry of the head
- Acquisition of the motion
 How does the geometry change
- · Face geometry
 - Polygon models
 - Splines
 - Subdivision surfaces

Polygon Models

- Easy to create and can be deformed easily
- However, the model should be complex in order to ensure smoothness

Spline Models

- Cubic, quadrilateral Bezier or B-spline surface patches are used
- However, a regular rectangular grid of control points is not suitable for modeling the detailed parts of the face
 - Hierarchical B-splines are introduced to overcome this problem

Subdivision Surfaces

- A polygonal control mesh is refined to match the face geometry
- They are able to create local complexity regions without global complexity
- However, modeling a specific face is difficult using subdivision surfaces
 - They are difficult to interpolate to a specific data set

Creating the Model

- Using CAD systems

 A cartoon like figure can be created with modeling tools like 3DS Max.
- Digitization
- Modification of an existing generic model

Parameterized Models

- Conformational parameters
 - 25 parameters in Parke's model
 - Symmetry between the sides of the face is assumed
 - 5 parameters to control the shape of the forehead,
 - cheekbone, cheek hollow, chin, and neck - 13 scale distances between facial features
 - 5 parameters to translate chin, nose, and eyebrow
- Expressive parameters

Animating the Face

- Simplest approach is to define a set of key poses
 - Animation is produced by interpolating between the positions of their corresponding vertices in the two key poses
 - Disadvantage: parts of the facial model are not individually controllable by the animator
- · What are the primitive motions of the face?
- How many degrees of freedom are there in the face?

Facial Action Coding System (FACS)

- 46 basic facial movements, called Action Units (AUs) are defined, and used in combination to describe all facial expressions.
 - Examples:
 - Lower brow, raise inner brow, wink, raise cheek, drop jaw

FACS

- · Disadvantages:
 - It is descriptive, not generative
 - It is not time based
 - Facial movements are analyzed only relative to a neutral pose
 - FACS describes facial expressions, not speech

Muscle Models

- Three aspects differentiate one musclebased model from the other
 - the geometry of the muscle-skin arrangement
 Are they modeled on the surface or attached to a structural layer beneath the skin
 - the skin model used
 - the muscle model used

Different Skin Models

- How does the skin move as a result of muscle contracts?
- The deformation of other points may attenuate based on the distance from the point of insertion and angle of deviation from the displacement vector

