CENG 732 Computer Animation

Spring 2006-2007 Week 9 Animating Cloth Motion Capture

Cloth Animation

- · Cloth animation in Blender
- · Cloth animation in Maya

Simple Draping

- Draping will occur as a cloth is hanged from a fixed number of support points
- The cloth is represented as a twodimensional grid of points located in 3D.
 - Certain grid points are fixed
- Convex-hull of the fixed points determine where the draping will occur

Simple Draping

- · Two phases
 - The draped surface is approximated with the convex hull of the constrained points
 - Iterative relaxation process where other grid points are displaced
 - Process continues until the maximum displacement is below a threshold

Simple Draping

 Vertices on the grid are labeled as interior or exterior depending on whether they are inside the convex-hull or not

Simple Draping

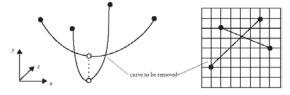
 The grid points along the line between two constrained points are determined

Cloth supported at two constrained points

Constrained points in grid space

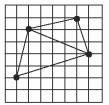
Catenary Curve

- The curve of a thread hanging between two vertices is called a catenary curve.
- · It has the following form


$$y = c - \left(a \cdot \cosh\left(\frac{x - b}{a}\right) \right)$$

where

$$\cosh x = \frac{e^x + e^{-x}}{2}$$


Catenary Curves

- If two curves cross each other in the grid space, the lower curve is removed
 - If a vertex is supported by two curves, the higher curve takes precedence

Simple Draping

 After the lower curve is removed a triangulation of the constrained grid points is constructed

Simple Draping

- The vertices of the grid points that fall on the lines of triangulation are positioned in 3D space according to the catenary equations
 - Given two vertices (x1,y1) and (x2,y2) the catenary equation between these two points can be formed (Equation 6.3 in the book)

Simple Draping

- Each triangle is repeatedly subdivided by constructing a catenary from one of the vertices to the midpoint of the opposite edge on the triangle
 - Repeated for all vertices of the triangle
 - The highest of the three catenaries is kept. The triangle will be divided into two new triangles

Relaxation Procedure

- Effect of gravity is handled implicitly in the formation of the catenary curves
- Exterior vertices are placed at the lowest height possible (to create a downward pull)
- Relaxation procedure repositions each vertex to satisfy unit distance from each of its neighbors

Motion Capture

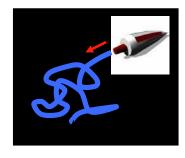
Motion Capture Videos

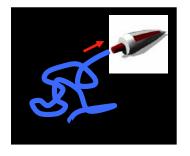
- · Capturing Ronaldinho's motion
- Full Body Motion Capture Suit
- Motion Capture by Staffordshire University student
- · Facial Motion Capture

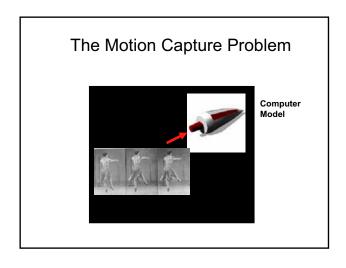
Motion Capture Research

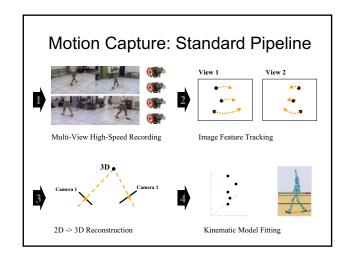
- · Vision based motion capture
- Motion blending

What is Motion Capture?


- The recording of RAW motion data for later use.
- Several different systems on the market
 - camera / optical
 - gyroscopes / accelerometers magnetic / fiber optic






The Graphics Problem

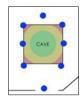
The Vision Problem

Where is Motion Capture Used?

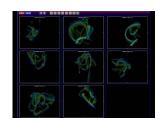
- Motion Analysis & Research
- Games
- Films & Animated Shorts
- Human Factor Studies
- Performance Arts
- Virtual Reality Simulations
- Education
- etc.

Marker Setup

- Usually defined by the desired output (CG Characters, Point Clouds, Joint Analysis, etc.)
- Typical human setup has 44 markers
 More markers require more CPU/processing time



Equipment / Configuration


Camera	MX13 Cameras
Supplier	Vicon Motion Capture Systems
Resolution	1.3 million pixel digital CMOS sensor
Sample Rate	484fps, full frame
Configuration	8 Cameras in radial configuration

- Placement of cameras
- Coverage concerns
- · Resolution and precision
- · Movement concerns

System Calibration

- Multi-step Process
- Takes 5-10min (on a good day)
- Should be done regularly

Wand and L-Frame Equipment

Define Tracked Rigid Bodies

Part of the Process

- 1. Calibrate Cameras
- 2. Put Markers on Subject
- 3. Calibrate Subject
- 4. Check Quality of Calibration
- 5. Record Motion
- 6. Cleanup Point Cloud
- 7. Label Markers in Point Cloud
- 8. Cleanup Resulting Data
- 9. Export Data
- 10. Import Data into Package of Choice

Motion Capture Based Puppetry

Virtual Actor System by SimGraphics

Popovic

Characters to Animate

© Electronic Arts

Visual Tracking

Visual Tracking: Unsolved for general settings

