

nature

Mathematical Derivation

MATH119 \& MATH120

- Assume all the motion is along a given line.

- Assume all the motion is along a given line.
- The position can be specified by a unique number: distance from origin O.

- Assume all the motion is along a given line.
- The position can be specified by a unique number: distance from origin O.
- One side is denoted as "+"

- Assume all the motion is along a given line.
- The position can be specified by a unique number: distance from origin O.
- One side is denoted as "+" , the other side "-"

- Assume all the motion is along a given line.
- The position can be specified by a unique number: distance from origin O.
- One side is denoted as " + " , the other side "-"
- The choice of O and the " + " side is completely arbitrary

Definitions:

- Displacement: the change in the position of an object Δx.

$$
\begin{align*}
\Delta x & =(\text { final position })-(\text { initial position }) \\
& =(3.0 \mathrm{~cm})-(-1.0 \mathrm{~cm})=4.0 \mathrm{~cm} \tag{1}
\end{align*}
$$

- Average velocity: If Δt is the time that an object moves by Δx, average velocity is

$$
\begin{equation*}
\bar{v}=\frac{\Delta x}{\Delta t} \tag{2}
\end{equation*}
$$

Definitions:

- Displacement: the change in the position of an object Δx.

Greek Letters
Δ : Finite differences of any size
δ : Finite differences of small size

- Average ve d: Infinitesimal difference (smaller average vel than anything else)

$$
\begin{equation*}
\bar{v}=\frac{-\stackrel{\prime}{\Delta t}}{\Delta t} \tag{2}
\end{equation*}
$$

in)
m
ves by Δx,

(3)

(3)

- As the final time moves closer to the initial time, i.e. the point B moves towards point A, we obtain the instantaneous velocity:

$$
\begin{equation*}
v_{\text {inst }}=\lim _{B \rightarrow A} \bar{v}_{A B}=\lim _{t_{f} \rightarrow t_{i}} \frac{\Delta x}{\Delta t}=\lim _{t_{f} \rightarrow t_{i}} \frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{d x}{d t} \tag{4}
\end{equation*}
$$

- As the final time moves closer to the initial time, i.e. the point B moves towards point A, we obtain the instantaneous velocity:

$$
\begin{equation*}
v_{\text {inst }}=\lim _{B \rightarrow A} \bar{v}_{A B}=\lim _{t_{f} \rightarrow t_{i}} \frac{\Delta x}{\Delta t}=\lim _{t_{f} \rightarrow t_{i}} \frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{d x}{d t} \equiv v \tag{4}
\end{equation*}
$$

- If δt is a sufficiently small amount of time, the displacement during this time is $\delta x=v \delta t$

$$
\begin{equation*}
x_{f}=x_{i}+v \delta t \tag{5}
\end{equation*}
$$

Question

If $v(t)$ is know for all $t \in\left(t_{i}, t_{f}\right)$, and a particle is at the position $x\left(t_{i}\right)=x_{0}$ initially, how can we find $x(t)$ for any $t \in\left(t_{i}, t_{f}\right)$?

Question

If $v(t)$ is know for all $t \in\left(t_{i}, t_{f}\right)$, and a particle is at the position $x\left(t_{i}\right)=x_{0}$ initially, how can we find $x(t)$ for any $t \in\left(t_{i}, t_{f}\right)$?

A: Assume δt is sufficiently small and $t_{f}=t_{i}+N \delta t$.

$$
\begin{align*}
x\left(t_{i}+\delta t\right)-x\left(t_{i}\right) & =v\left(t_{i}\right) \delta t \\
x\left(t_{i}+2 \delta t\right)-x\left(t_{i}+\delta t\right) & =v\left(t_{i}+\delta t\right) \delta t \\
x\left(t_{i}+3 \delta t\right)-x\left(t_{i}+2 \delta t\right) & =v\left(t_{i}+2 \delta t\right) \delta t \\
\cdots & \tag{6}\\
x\left(t_{i}+N \delta t=t_{f}\right)-x\left(t_{i}+(N-1) \delta t\right) & =v\left(t_{2}+(N-1) \delta t\right)
\end{align*}
$$

$$
\begin{equation*}
x\left(t_{f}\right)-x_{0}=\sum_{k=0}^{N-1} v\left(t_{i}+k \delta t\right) \delta t \tag{7}
\end{equation*}
$$

Read Zeno's paradox!

Question

If $v(t)$ is know for all $t \in\left(t_{i}, t_{f}\right)$, and a particle is at the position $x\left(t_{i}\right)=x_{0}$ initially, how can we find $x(t)$ for any $t \in\left(t_{i}, t_{f}\right)$?

A: Assume δt is sufficiently small and $t_{f}=t_{i}+N \delta t$.

$$
\begin{align*}
x\left(t_{i}+\delta t\right)-x\left(t_{i}\right) & =v\left(t_{i}\right) \delta t \\
x\left(t_{i}+2 \delta t\right)-x\left(t_{i}+\delta t\right) & =v\left(t_{i}+\delta t\right) \delta t \\
x\left(t_{i}+3 \delta t\right)-x\left(t_{i}+2 \delta t\right) & =v\left(t_{i}+2 \delta t\right) \delta t \\
\cdots & \tag{6}\\
x\left(t_{i}+N \delta t=t_{f}\right)-x\left(t_{i}+(N-1) \delta t\right) & =v\left(t_{2}+(N-1) \delta t\right)
\end{align*}
$$

$$
\begin{equation*}
x\left(t_{f}\right)-x_{0}=\sum_{k=0}^{N-1} v\left(t_{i}+k \delta t\right) \delta t \xrightarrow{\delta t \rightarrow 0} \int_{t_{i}}^{t_{f}} v(t) d t \tag{7}
\end{equation*}
$$

Read Zeno's paradox!

Special Case: Motion with constant velocity v_{0} : In this case

$$
\begin{equation*}
x\left(t_{f}\right)-x_{0}=\sum_{k=0}^{N-1} v\left(t_{i}+k \delta t\right) \delta t=\sum_{k=0}^{N-1} v_{0} \delta t=v_{0} N \delta t=v_{0}\left(t_{f}-t_{i}\right) \tag{8}
\end{equation*}
$$

Special Case: Motion with constant velocity v_{0} : In this case

$$
\begin{gather*}
x\left(t_{f}\right)-x_{0}=\sum_{k=0}^{N-1} v\left(t_{i}+k \delta t\right) \delta t=\sum_{k=0}^{N-1} v_{0} \delta t=v_{0} N \delta t=v_{0}\left(t_{f}-t_{i}\right) \tag{8}\\
x(t)=v_{0}\left(t-t_{i}\right)+x_{0} \tag{9}
\end{gather*}
$$

Note that for motion with constant velocity $\bar{v}=v_{0}$. Hence $\Delta x=v_{0} \Delta t$

- The same steps can be repeated for the change of velocity.
- $\bar{a}=\frac{\Delta v}{\Delta t}$. The unit of acceleration is $\mathrm{m} / \mathrm{s}^{2}$
- $a_{\text {inst }}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t} \equiv a$
- $v(t)=v\left(t_{0}\right)+\int_{t_{0}}^{t_{f}} a\left(t^{\prime}\right) d t^{\prime}$
- The same steps can be repeated for the change of velocity.
- $\bar{a}=\frac{\Delta v}{\Delta t}$. The unit of acceleration is $\mathrm{m} / \mathrm{s}^{2}$
- $a_{\text {inst }}=1$ Acceleration is in the direction of Δv,
- $v(t)=$ Acceleration is in the direction of v.

Example:

Motion with Constant Acceleration. Initial conditions: $x(0)=0$, $v(0)=0$. Realistic case: You stand at the top of a building. You are holding a mass m in your and release it from rest outside a window.

- Let a be the constant acceleration.

$$
\begin{equation*}
v(t)=v(0)+\int_{0}^{t} a d t^{\prime}=a t \tag{10}
\end{equation*}
$$

- The position:

$$
\begin{align*}
x(t) & =x(0)+\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime} \\
& =\int_{0}^{t}\left(a t^{\prime}\right) d t^{\prime}=\left.\frac{1}{2} a t^{\prime 2}\right|_{0} ^{t}=\frac{1}{2} a t^{2} \tag{11}
\end{align*}
$$

Dimensional Analysis

Most of the time, the final formula can be estimated unto overall coefficients using dimensions only. Denote the dimension of any quantity O by [O]

- Dimension of $x(t)$ is $[x(t)]=m$
- The dimensionful parameters in the problem are the acceleration a and the time t.
- Assume $x(t)=A a^{k} t^{l}$ where A, k and I are numbers.

$$
\begin{equation*}
\left[A a^{m} t^{\prime}\right]=[A][a]^{k}[t]^{\prime}=1\left(\frac{m}{s^{2}}\right)^{k} s^{\prime}=m^{k} s^{\prime-2 k} \tag{12}
\end{equation*}
$$

- $x=A a^{k} t^{\prime} \Longrightarrow k=1$ and $I-2 k=0 \Longrightarrow x(t)=A a t^{2}$
- Explicit calculation shows $A=\frac{1}{2}$.
- In principle these steps can be done for the change in acceleration, change in the change in the acceleration, etc.
- Newton's Laws tell us that this is not necessary
- The acceleration of an object is determined by external effects.

Compare

$$
\begin{align*}
& v(t)=\frac{d x}{d t} \Longleftrightarrow x(t)=x(0)+\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime} \tag{13}\\
& a(t)=\frac{d v}{d t} \Longleftrightarrow v(t)=v(0)+\int_{0}^{t} a\left(t^{\prime}\right) d t^{\prime} \tag{14}
\end{align*}
$$

Compare

$$
\begin{align*}
& v(t)=\frac{d x}{d t} \Longleftrightarrow x(t)=x(0)+\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime} \tag{13}\\
& a(t)=\frac{d v}{d t} \Longleftrightarrow v(t)=v(0)+\int_{0}^{t} a\left(t^{\prime}\right) d t^{\prime} \tag{14}
\end{align*}
$$

Integration is the inverse of differentiation

Vectors

- For motion that is not confined to a line, more than a number is necessary to describe the direction.
- A vector is a recipe for how to go to the point A from the origin.
- A vector is a number and a direction
- Origin is arbitrarily chosen

$$
\begin{align*}
& \vec{A}=(3,2) m \tag{15}\\
& \vec{A}=(3 m) \hat{x}+(2 m) \hat{y} \\
& \vec{A}=(3 m) \hat{i}+(2 m) \hat{j} \tag{16}\\
& \vec{A}=\left(\sqrt{13} m, \arctan \frac{2}{3}\right) \quad(18)
\end{align*}
$$

$$
\begin{align*}
& y(m) \tag{15}\\
& \vec{A}=(3,2) m \\
& \vec{A}=(3 m) \hat{x}+(2 m) \hat{y} \tag{16}\\
& \vec{A}=(3 m) \hat{i}+(2 m) \hat{j} \tag{17}\\
& \vec{A}=\left(\sqrt{13} m, \arctan \frac{2}{3}\right) \tag{18}\\
& \vec{A}=(2,3) m \\
& \vec{A}=\left(\sqrt{13} m, \arctan \frac{3}{2}\right)
\end{align*}
$$

(19)

Vector Operations-Multiplication by a number

- A vector \vec{A} is a number (the length of the vector, $|\vec{A}|$) and a direction.
- The vector $\lambda \vec{A}$ is another vector
- The length of $\lambda \vec{A}$ is $|\lambda \vec{A}|=|\lambda||\vec{A}|$
- The direction of $\lambda \vec{A}$ is the same as the direction of \vec{A} if $\lambda>0$, and opposite to \vec{A} if $\lambda<0$

Vector Operations-Addition of Vectors

Geometrical Addition

Vector Operations-Addition of Vectors

Geometrical Addition

Vector Operations-Addition of Vectors

Geometrical Addition

Vector Operations-Addition of Vectors

Geometrical Addition

Componentwise Addition

- $\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}$
- $\vec{B}=B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}$
- $\vec{C}=C_{x} \hat{x}+C_{y} \hat{y}+C_{z} \hat{z}$
- $C_{x}=A_{x}+B_{x}, C_{y}=A_{y}+B_{y}$
$C_{z}=A_{z}+B_{z}$
- $C_{i}=A_{i}+B_{i}, i=x, y$ or z

Vector Operations-Addition of Vectors

Geometrical Addition

Componentwise Addition

- $\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}$
- $\vec{B}=B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}$
- $\vec{C}=C_{x} \hat{x}+C_{y} \hat{y}+C_{z} \hat{z}$
- $C_{x}=A_{x}+B_{x}, C_{y}=A_{y}+B_{y}$
$C_{z}=A_{z}+B_{z}$
- $C_{i}=A_{i}+B_{i}, i=x, y$ or z

Subtraction
$\vec{A}-\vec{B}=\vec{A}+((-1) \vec{B})$

Vector Operations: Scalar Product

- Scalar product gives a number from two vectors
- $\vec{A} \cdot \vec{B} \equiv|\vec{A}||\vec{B}| \cos \alpha$

Vector Operations: Scalar Product

- Scalar product gives a number from two vectors
- $\vec{A} \cdot \vec{B} \equiv|\vec{A}||\vec{B}| \cos \alpha$
- $\vec{A} \cdot \vec{B}=A_{\|} B$

Vector Operations: Scalar Product

- Scalar product gives a number from two vectors
- $\vec{A} \cdot \vec{B} \equiv|\vec{A}||\vec{B}| \cos \alpha$
- $\vec{A} \cdot \vec{B}=A B_{\|}$

Vector Operations: Scalar Product

- Scalar product gives a number from two vectors
- $\vec{A} \cdot \vec{B} \equiv|\vec{A}||\vec{B}| \cos \alpha$
- Scalar product is linear:
$\vec{A} \cdot(a \vec{B}+b \vec{C})=a(\vec{A} \cdot \vec{B})+b(\vec{A} \cdot \vec{C})$
- $\hat{x} \cdot \hat{x}=\hat{y} \cdot \hat{y}=\hat{z} \cdot \hat{z}=1$,
$\hat{x} \cdot \hat{y}=\hat{x} \cdot \hat{z}=\hat{y} \cdot \hat{z}=0$

Vector Operations: Scalar Product

duct gives a number from
;
$\vec{B} \mid \cos \alpha$
duct is linear:

$$
\begin{aligned}
& \vec{C})=a(\vec{A} \cdot \vec{B})+b(\vec{A} \cdot \vec{C}) \\
& \vdots=\hat{z} \cdot \hat{z}=1, \\
& \vdots=\hat{y} \cdot \hat{z}=0
\end{aligned}
$$

$\vec{A} \cdot \vec{D}=A D_{\|}=A\left(B_{\|}+C_{\|}\right)=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$

Vector Operations: Scalar Product

- Scalar product gives a number from two vectors

- $\vec{A} \cdot \vec{B} \equiv|\vec{A}||\vec{B}| \cos \alpha$
- $\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}$,
$\vec{B}=B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}$
- $\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
- $A_{x}=\vec{A} \cdot \hat{x}, A_{y}=\vec{A} \cdot \hat{y}$, and $A_{z}=\vec{A} \cdot \hat{z}$

Vector Operations: Vector Product

- Vector product gives a vector from two vectors
- $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \alpha$
- Direction of $\vec{A} \times \vec{B}$ is given by the right hand rule. $(\vec{A} \times \vec{B}=-\vec{B} \times \vec{A})$

Vector Operations: Vector Product

- Vector product gives a vector from two vectors
- $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \alpha$
- Direction of $\vec{A} \times \vec{B}$ is given by the right hand rule. $(\vec{A} \times \vec{B}=-\vec{B} \times \vec{A})$
- $|\vec{A} \times \vec{B}|=A_{\perp} B$

Vector Operations: Vector Product

- Vector product gives a vector from
 two vectors
- $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \alpha$
- Direction of $\vec{A} \times \vec{B}$ is given by the right hand rule. $(\vec{A} \times \vec{B}=-\vec{B} \times \vec{A})$
- $|\vec{A} \times \vec{B}|=A B_{\perp}$

Vector Operations: Vector Product

- Vector product gives a vector from two vectors
- $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \alpha$
- Direction of $\vec{A} \times \vec{B}$ is given by the right hand rule. $(\vec{A} \times \vec{B}=-\vec{B} \times \vec{A})$
- Vector product is linear:
$\vec{A} \cdot(a \vec{B}+b \vec{C})=a(\vec{A} \cdot \vec{B})+b(\vec{A} \cdot \vec{C})$
- $\hat{x} \times \hat{x}=\hat{y} \times \hat{y}=\hat{z} \times \hat{z}=0$,
$\hat{x} \times \hat{y}=\hat{z}, \hat{x} \times \hat{z}=-\hat{y}, \hat{y} \times \hat{z}=\hat{x}$

Vector Operations- Vector Division

Vector Operations- Vector Division

Division by a vector DOES NOT exist!

