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ABSTRACT

Motivation: Deciphering the location of gene duplications and
multiple gene duplication episodes on the Tree of Life is fundamental
to understanding the way gene families and genomes evolve. The
multiple gene duplication problem provides a framework for placing
gene duplication events onto nodes of a given species tree, and
detecting episodes of multiple gene duplication. One version of the
multiple gene duplication problem was defined by Guigó et al. in
1996. Several heuristic solutions have since been proposed for this
problem, but no exact algorithms were known.
Results: In this article we solve this longstanding open problem by
providing the first exact and efficient solution. We also demonstrate
the improvement offered by our algorithm over the best heuristic
approaches, by applying it to several simulated as well as empirical
datasets.
Contact: oeulenst@cs.iastate.edu

1 INTRODUCTION
Gene duplication is known to have played a major role in the
evolution of almost all life on Earth. For example, analyses
of genomic data from numerous plants such as grasses (Guyot
and Keller, 2004; Paterson et al., 2004; Schlueter et al., 2004;
Vandepoele et al., 2003; Wang et al., 2005; Yu et al., 2005),
Arabidopsis or other Brassicaceae (Blanc et al., 2003; Bowers
et al., 2003; Cannon et al., 2006; Schlueter et al., 2004; Schranz
and Mitchell-Olds, 2006; Simillion et al., 2002; Vision et al.,
2000), poplar (Sterck et al., 2005), cotton (Blanc and Wolfe, 2004;
Rong et al., 2004) and Physcomitrella (Rensing et al., 2007),
among others, have revealed evidence of ancient gene duplications.
Complex evolutionary processes such as gene duplication and
loss, recombination and horizontal gene transfer generate gene
trees that differ from species trees. One approach to infer gene
duplications is to reconcile the conflicting gene trees with respect
to a trusted species tree (Bonizzoni et al., 2005; Chen et al.,
2000; Goodman et al., 1979; Górecki and Tiuryn, 2004; Guigó
et al., 1996; Mirkin et al., 1995; Page, 1994; Zhang, 1997).
Existing techniques that reconcile gene trees to species trees
can identify gene duplications but cannot, in general, accurately
locate them on the species tree. Other approaches make use
of sequence similarity to reconstruct the underlying evolutionary
history of genes (see, for example, Wapinski et al., 2007a,b).
Probabilistic models for gene/species tree reconciliation as well as
gene sequence evolution have also been developed (Arvestad et al.,
2003, 2004).

There is evidence that many gene duplications are part of larger
multiple gene duplication episodes, during which a large portion
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of an organism’s genome is duplicated. In fact, it is known that the
entire genomes of numerous species (many eukaryotes for example)
have been entirely duplicated one or more times. However, the rapid
gene loss and gene rearrangements that follow a multiple gene
duplication episode can make them difficult or even impossible
to detect; and there is often no clear consensus on the number of
ancient multiple gene duplication episodes or their precise location
in evolutionary history.

Deciphering the location of gene duplications and multiple gene
duplication episodes on the Tree of Life is a fundamental problem
in understanding the way gene families and genomes evolve.
The multiple gene duplication problem provides a framework
for (i) mapping gene duplication events onto a given species
tree and (ii) inferring and locating multiple gene duplication
episodes. Informally, the multiple gene duplication problem is to
assign duplication events to nodes in a species trees in such a
way that the total number of multiple gene duplication episodes
(or simply episodes in short) is minimized. This allows for a
‘parsimonious’ reconciliation of the gene trees with respect to
a trusted species tree, which helps to locate gene duplications,
as well as to detect multiple gene duplication episodes, more
accurately.

Guigó et al. (1996) were the first to address a comprehensive
phylogenetic problem that maps duplication events from a collection
of rooted, binary gene trees onto a larger rooted binary species
tree. They presented a heuristic that could be used to trace
back the identified gene duplications to a few multiple gene
duplication episodes. Later on, this heuristic approach was refined
and restated in more formal terms, and used to study multiple gene
duplication episodes in vertebrates by Page and Cotton (2002).
Essentially, this heuristic approach sought to solve the multiple gene
duplication problem of Guigó et al. by solving instead a similar
problem which we refer to as the ‘episode clustering’ problem.
An alternative version of the multiple gene duplication problem
was introduced by Fellows et al. (1998b) which they proved to
be intrinsically difficult. Hence, we direct our focus to the work
of Guigó et al. and Page and Cotton. The episode clustering problem
determines duplication events using the Gene Duplication (GD)
model from Goodman et al. (1979). Each duplication can be placed
on any species on a path between the two (not necessarily distinct)
most recent species that could have contained the duplication and
its parent, respectively. In case the parent does not exist, the path
runs between the most recent species for the duplication and the
root of the species tree. An example is depicted in Figure 1. The
duplications in gene tree G are represented by the three bold vertices.
Associated with each bold vertex is its path represented by an
interval. For example, the interval [5,3] represents the path 〈5,4,3〉
in the species trees S. Let g denote the node corresponding to the
interval [5,3]. Species 5 is the most recent species that could have
contained g and the parent of species 3, i.e. 2, is the most recent
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Fig. 1. A gene tree G and a comparable species tree S is depicted. The
bold vertices in G are duplications and their intervals represent their allowed
locations in the species tree S.

species that could have contained the parent of g. The Episode
Clustering (EC) problem is, given a collection of gene trees and
a species tree, find a minimum number of locations in the species
tree where all duplications in the gene trees can be placed. For
example, all three duplications in Figure 1 can be placed on species
nodes 2 and 3

The EC problem itself has a long and interesting history. Guigó
et al. (1996) presented a heuristic approach to solve this problem.
This heuristic was somewhat imprecise, and there were hints, but
no formal algorithm, on how to deal with certain optimization
steps. Page and Cotton (2002) observed that the EC problem can
be efficiently and cleanly reduced to the Set Cover problem. They
approach the EC problem using a heuristic for the intrinsically
difficult set-cover problem. Recently, Burleigh et al. (2008) gave
an efficient and exact solution for the EC problem. However, the
EC problem itself suffers from a major limitation: it minimizes the
number of locations in the species tree at which gene duplications
occur, but it need not minimize the total number of episodes of
multiple gene duplication. In fact, it is easy to find examples
where minimizing the number of locations, does not minimize
the number of episodes. Indeed, the desired goal in the papers
of both Guigó et al. (1996) and Page and Cotton (2002) is
to minimize the number of episodes, and the EC problem was
used only as a heuristic approach for this problem. We refer
to this problem of minimizing the number of episodes as the
Minimum Episodes (ME) problem. In essence, the ME problem
is the multiple gene duplication problem as defined by Guigó et al.
(1996).

Thus, all previous attempts at solving the ME problem have made
use of heuristics approaches based on the EC problem. In this article
we finally solve a longstanding open problem by providing the first
exact and efficient solution to the ME problem (see Section 3). Our
algorithm is surprisingly simple and extremely efficient. We have
also implemented our algorithm and demonstrated the improvement
it offers over the best heuristic approaches experimentally by
applying it to several simulated as well as empirical datasets (see
Section 4).

2 BASIC DEFINITIONS, NOTATION AND
PRELIMINARIES

In this section we first introduce basic definitions and notation that
we shall use and then define the preliminaries required for this work.

2.1 Basic definitions and notation
A tree T is a connected graph with no cycles, consisting of a node
set V (T ) and an edge set E(T ). T is rooted if it has exactly one
distinguished node called the root which we denote by Ro(T ).
Let T be a rooted tree. We define ≤T to be the partial order on
V (T ) where x≤T y if y is a node on the path between Ro(T ) and x.
The set of minima under ≤T is denoted by Le(T ) and its elements
are called leaves. If {x,y}∈E(T ) and x≤T y then we call y the
parent of x denoted by PaT (x) and we call x a child of y. The
set of all children of y is denoted by ChT (y). If two nodes in T
have the same parent, they are called siblings. The least common
ancestor of a non-empty subset L⊆V (T ), denoted as lca(L), is
the unique smallest upper bound of L under ≤T . A subtree of T
rooted at node y∈V (T ), denoted by Ty, is the tree induced by
{x∈V (T ) :x≤y}. T is (fully) binary if every node has either zero
or two children. Throughout this article, the term tree refers to a
rooted fully binary tree.

Given a≤T b we define the interval [a,b]={x∈V (T ) |a≤T
x ≤T b}. The height of T , denoted by h(T ) is the number of nodes
on a maximal length path from Ro(T ) to a leaf node of T . Thus, a
rooted binary tree with three leaves has height three.

2.2 The ME problem
In this section we formally define the ME problem. The ME

problem seeks to assign duplication events to nodes in a species
tree, where each duplication event is associated with an interval
in the species tree describing the locations where that duplication
can be placed. The definition of duplication is based on the (GD)
model introduced by Goodman et al. (1979). Guigó et al. (1996)
extended this model and defined the associated intervals for each
gene duplication. Here we only provide definitions necessary to state
the ME problem.

The GD model is based on a gene and species tree from
which gene duplications can be derived. A species tree is a tree
that depicts the evolutionary relationships of a set of species.
Given a gene family for a set of species, a gene tree is a tree
that depicts the evolutionary relationships among the sequences
encoding only that gene family in the given species. Thus the
vertices in a gene tree represent genes. In order to compare a gene
tree G with a species tree S a mapping from each gene g∈V (G)
to the most recent species in S that could have contained g is
required.

Definition 2.1 (LCAMapping). A leaf-mapping LG,S : Le(G) →
Le(S) specifies, for each gene g, the species from which it was
sampled. The extension MG,S : V (G)→V (S) of LG,S is the LCA
mapping defined by MG,S(g)= lca(LG,S(Le(Gg)).

Definition 2.2 (Comparability). The trees G and S are
comparable if there exists a leaf-mapping LG,S.1 A set of gene trees
G and S are comparable if each gene tree in G is comparable with S.

Throughout the remainder of this article, G denotes a collection
of input gene trees, S a comparable species tree, and G denotes an
arbitrary gene tree in G.

1Note that mathematically speaking such a leaf-mapping always exists.
However, in the current context, we are only concerned with biologically
relevant leaf-mappings.
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Definition 2.3 (Duplication). A node v∈V (G) is a (gene)
duplication if MG,S(v)=MG,S(u) for some u∈Ch(v) and we define
Dup(G,S)={g∈V (G) |g is a duplication }.

Definition 2.4 (Interval I(g)). For every g∈Dup(G,S), the
interval I(g) is defined to be:

• [MG,S(g),Ro(S)], if g=Ro(G),

• [MG,S(g),MG,S(g)], if MG,S(g)=MG,S(Pa(g)) and

• [MG,S(g),MG,S(Pa(g))]−{MG,S(Pa(g))},otherwise.

Definition 2.5 (Valid Mapping). A mapping FG,S :V (G)→V (S)
is called valid if for each g∈G,

FG,S(g)=
{

s, where s∈ I(g), if g∈Dup(G,S),

MG,S(g), otherwise.

Note: (i) F is used to denote the mapping ∪G∈GFG,S , and we say
F is valid if FG,S is valid for each G∈G, (ii) given a mapping F ,
and a node s∈V (S), we write F−1(s) to denote the set {g : F (g)=s}
and (iii) in the remainder of this article, we denote by FM the valid
mapping ∪G∈G MG,S .

Definition 2.6 (H(F ,s)). Given G and S, a valid mapping F ,
and a node s∈V (S), we define H(F ,s) to be the sub-graph of G2

induced by the node set F−1(s).

Note that H(F ,s) must be a forest.
Throughout this article we abbreviate the term ‘multiple gene

duplication episode’ simply to ‘episode’. Given any valid mapping
F , the following definition defines (i) the number of episodes,
�(F ,s), at each node s∈V (S) and (ii) the total number of episodes
�(F ). For the actual definition of an episode itself, we refer the
reader to Guigó et al. (1996).

Definition 2.7 (�(F ,s) and �(F )). Given a valid mapping F
and a node s∈V (S), we denote by �(F ,s) the number of episodes
at s caused by the mapping F . Then, �(F ,s)=max{h(T ) : T ∈
H(F ,s)}, and, �(F )=∑

s∈V (S)�(F ,s).

Definition 2.8 (�opt). �opt =min{�(F ) :F is any valid
mapping}.

G and S form the input for the ME problem. The output is a valid
mapping Fopt :∪G∈GV (G)→V (S), such that �(Fopt) is minimized.
More formally,

Problem 1. Minimum Episodes (ME)
Instance: A collection of gene trees G and a comparable

species tree S.
Find: A valid mapping Fopt such that �(Fopt)=�opt .

3 THE ME PROBLEM
It is not hard to see that the number of distinct valid mappings can be
extremely large (exponential in the size of the input). It is therefore
infeasible to solve the ME problem by considering all possible valid
mappings and then picking the one that causes the fewest episodes.

2When G is viewed as a forest.

In this section we give a simple and extremely efficient algorithm to
solve the ME problem. The main idea of the algorithm is to traverse
the species tree S in post-order, and perform greedy optimization
steps at each node. As we shall prove, this leads us to a globally
optimal mapping.

In order to state the algorithm, we must first define a few terms.

Definition 3.1 (Leading node). Let F be a valid mapping and
let s∈V (S). Then, we say a node g∈F−1(s) is a leading node if and
only if g=Ro(T ) where T ∈H(F ,s) and h(T )=�(F ,s).

Definition 3.2 (Free node). Given a valid mapping F , and a
node s∈V (S) such that s 	=Ro(S), a node g∈F−1(s) is called free
if and only if Pa(s)∈ I(g).

For convenience, we refer to each node s∈V (S) for which
F−1(s) 	=∅, as a relevant node. Also recall that FM denotes the
mapping ∪G∈G MG,S .

We begin by stating the intuitive idea behind our algorithm.
Consider any valid mapping F :∪G∈GV (G)→V (S). Given any node
s∈V (S), let F ′ be a new mapping constructed from F by moving
the mapping of all the free nodes in F−1(s) to Pa(s). Clearly, F ′
must be a valid mapping. Now, if all the leading nodes in F−1(s)
are free, then we can show that �(F ′)≤�(F ). On the other hand,
if not all the leading nodes in F−1(s) are free, then we must
have �(F ′)≥�(F ). This simple observation forms the basis of our
greedy algorithm. If these greedy optimizations are carried out in
a particular order, then it can be shown that the resulting mapping
will be an optimal one.

We are now ready to state our algorithm. The algorithm starts
with the LCA mapping from the gene trees to the species tree, and
progressively modifies it so that when the algorithm terminates,
we have an optimal valid mapping. First, a valid mapping F :
∪G∈GV (G)→V (S) is initialized such that F =FM. Next, we
traverse S in post-order, and at each node, say s, we check if it
is relevant and if all the leading nodes in F−1(s) are free. If they
are, then we modify the mapping F by changing the mapping of all
the leading nodes in F−1(s) to Pa(s). It can be shown that when the
post-order traversal is finished, the mapping F must be a solution
to the ME problem (see Theorem 3.1). This algorithm is described
more formally in Algorithm 1.

Algorithm 1 This algorithm solves the ME problem

Input: A set of gene trees G and the species tree S. Initially all gene
nodes map according to the LCA mapping.

1: Compute the LCA mapping MG,S for each G∈G.
2: Compute the interval I(g) for each gene tree node g.
3: F :∪G∈GV (G)→V (S) denotes a valid mapping. Initially, set

F =∪G∈G MG,S .
4: for each node s in a post-order traversal of S do
5: if s is a relevant node then
6: if all leading nodes in F−1(s) are free then
7: Define a mapping F̂ :∪G∈GV (G)→V (S) as follows:

F̂ (g)=
{

Pa(s), if g is a leading node in F−1(s),

F (g), otherwise.
(1)

8: Rename F̂ to F
9: return F
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We denote the final mapping output by Algorithm 1 by Fopt .
In the remainder of this section we first show that Fopt is a valid
mapping and �(Fopt)=�opt , and then study the complexity of
Algorithm 1.

Lemma 3.1. Fopt is a valid mapping.

Proof. Algorithm 1 starts with the mapping F =FM which is
valid by definition. During each iteration of the loop, the mapping F
may be modified according to Equation (1). However, Equation (1)
only modifies the mapping of those nodes that are free, and hence
produces a valid mapping. Therefore, each mapping produced by
the algorithm, including the mapping Fopt , is valid. �

Lemma 3.2. Let F : ∪G∈G V (G)→V (S) be any valid mapping.
Then we have the following:

1. If s∈V (S) is a relevant node under mapping FM, then
�(FM,s)−1≤�(F ,s)≤�(FM,s).

2. If s∈V (S) is not a relevant node under mapping FM, then
0≤�(F ,s)≤1.

Proof. Part 1: Here s is a relevant node i.e. F−1
M

(s) 	=∅. Let

A denote the set of nodes that are present in F−1
M

(s) but not in

F−1(s) and B denote the set of nodes that are present in F−1(s) but
not in F−1

M
(s). Observe that all the nodes in A must be leading

nodes in F−1
M

(s). Relocating all the leading nodes in F−1
M

(s)
reduces �(FM,s) by exactly 1. Therefore, relocating the nodes in
A reduces �(FM,s) by at most 1. This proves that �(FM,s)−1≤
�(F ,s).

Consider now the set B. Let a and b be two gene duplication
nodes from some gene tree in G such that one is an ancestor of
the other, and FM(a) 	=FM(b). Then, Definition 2.4 implies that
F (a) 	=F (b). Therefore, none of the nodes in set B is an ancestor of
another, and hence none of them is a leading node in F−1(s). This
proves that �(F ,s)≤�(FM,s).

Part 2: In this case F−1
M

(s)=∅, and therefore B=F−1(s).
Following the argument from the previous paragraph, we can
conclude that none of the nodes in set B is an ancestor of another.
This implies that �(F ,s)≤1. �

The following three lemmas are required for the proof of
Theorem 3.1.

Lemma 3.3. Let F : ∪G∈G V (G)→V (S) be a valid mapping
and s∈V (S) be a node such that �(Fopt,s)>�(F ,s). Then,
�(Fopt,s)=1.

Proof. There are two possible cases: (i) s is not a relevant node
under FM or (ii) s is a relevant node under FM. We analyze these
cases separately.
Case (i): In this case, by Part 2 of Lemma 3.2, we must have
�(F ,s)=0 and �(Fopt,s)=1.
Case (ii): If �(FM,s)<2, then by Part 1 of Lemma 3.2 the result
follows immediately; therefore, let us assume that �(FM, s) ≥ 2.
Part 1 of Lemma 3.2 implies that we must have �(F ,s)=
�(FM,s)−1 and �(Fopt,s)=�(FM,s).

Let A denote the set of nodes that are present in F−1
M

(s) but not

in F−1(s), and B denote the set of nodes that are present in F−1
opt (s)

but not in F−1
M

(s). All the nodes in A must be leading nodes in

F−1
M

(s), and since these nodes are not present in F−1(s), all the
nodes in A must be free as well. Also, none of the nodes in B can be
a leading node in F−1

opt (s) (see the proof of Part 1 of Lemma 3.2).

Therefore, all of the leading nodes in F−1
opt (s) must be present in A,

which implies that all the leading nodes in F−1
opt (s) are free. Thus,

during the execution of Algorithm 1, the mapping for these nodes
would have been changed. This is a contradiction, and hence we
cannot have �(FM,s)≥2. �

Lemma 3.4. Let node a be such that FM(a)<S Fopt(a).
If F : ∪G∈G V (G)→V (S) is a valid mapping such that
F (a) = FM(a), then �(Fopt,FM(a))<�(F ,FM(a)).

Proof. Since F (a)<S Fopt(a), a must be a leading node

in F−1
M

(a). This implies that �(F ,FM(a)) 	<�(FM,FM(a)).
Moreover, since Fopt(a) 	=FM(a), we have �(Fopt,FM(a))=
�(FM,FM(a))−1 (see Algorithm 1). The lemma follows. �

Lemma 3.5. Let node a be such that FM(a)<S Fopt(a).
If � = {x : FM(a)<S x<S Fopt(a)}, then Fopt(x)=0 for all x∈�.

Proof. Consider any node x∈�. There must exist some valid
mapping F , realized during the execution of Algorithm 1, for which
F (a)=x. However, as the execution of Algorithm 1 progresses,
the mapping of a changes. This implies that a must be a leading
node in F−1(a). Observe that a could be a leading node in
F−1(a) only if �(F ,x)=1. Furthermore, for the mapping of
a to be changed, all the nodes in F−1(a) must be free, and
would therefore not map to node x when the algorithm terminates.
Thus, Fopt(x)=0. �

Theorem 3.1. Algorithm 1 solves the ME problem.

Proof. In Lemma 3.1 we have already established that Fopt
is a valid mapping. Therefore, to establish the correctness of our
algorithm, it is sufficient to show that �(Fopt)=�opt . Let us
assume, for the sake of contradiction, that there exists some valid
mapping F for which �(Fopt)>�(F ). This implies that there must
be at least one node s∈V (S) for which �(Fopt,s)>�(F ,s). We
may assume, without any loss of generality, that s has the following
property: there does not exist any other node t ∈V (Ss) for which
�(Fopt,t)>�(F ,t).

By Lemma 3.3 we know that node s must be such that
�(Fopt, s) = 1. This implies that �(F , s) = 0, i.e. F−1(s) = ∅.
We will now show that there exists at least one node t ∈
V (Ss)\{s} for which �(Fopt,t)<�(F ,t). This would imply that∑

v∈V (Ss)�(Fopt,v)≤∑
v∈V (Ss)�(F ,v).

Let A=F−1
opt (s); clearly A 	=∅. We now have two possible

scenarios, exactly one of which must be true: (i) F (g)>S s for each
g∈A or (ii) there exists some g∈A for which F (g)<S s. If case
(i) were possible, it would imply that all nodes in A are leading
and free, and therefore Algorithm 1 would have already moved their
mappings to nodes that are proper ancestors of s. Hence, case (ii) is
the only possible scenario.

So far we have shown that if there exists some valid mapping
F for which �(Fopt)>�(F ), then there must exist some node,
say a, where a∈A and F (a)<S s. Clearly, FM(a)≤S F (a) <S s.
This leads us to two possible cases, exactly one of which
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must be true: (i) FM(a)=F (a) or (ii) FM(a)<S F (a). If case
(i) were true, then by Lemma 3.4 we must have �(F ,F (a))>
�(Fopt,F (a)). If case (ii) were true, then Lemma 3.5 implies
that �(Fopt,F (a))=0, but �(F ,F (a)) 	=0. Thus, in either case,
there exists some t ∈V (Ss)\{s}, for which �(Fopt,t)<�(F ,t). And
hence,

∑
v∈V (Ss)�(Fopt,v)≤∑

v∈V (Ss)�(F ,v).

Now, let P=∑
v∈V (Ss)F−1

opt (v) and Q=∑
v∈V (Ss)F−1(v).

Suppose there exists a node x such that Fopt(x)∈V (S)\V (Ss), and
F (x)∈V (Ss). Then, there are two possibilities: (i) F (x)∈V (Ss)\{s}
or (ii) F (x)=s. In case (i), Lemma 3.5 implies that F−1

opt (s) must
be empty, which is clearly a contradiction. Similarly, case (ii) leads
to a clear contradiction as well since F−1(s)=∅. Therefore, such a
node x cannot exist. And hence Q⊆P.

All together, this implies that in the subtree Ss, the mapping
F induces at least as many episodes as the mapping Fopt , even

though
∑

v∈V (Ss)F−1(s)⊆∑
v∈V (Ss)F−1

opt (s). Let us now construct

a new valid mapping F ′ : ∪G∈G V (G)→V (S) as follows:

F ′(g)=
{

Fopt(g), if Fopt(g)∈V (Ss),

F (g), otherwise.

In light of the observation made in the previous paragraph,
we must have �(F ′)≤�(F ). Moreover, F ′ has fewer nodes s
for which �(Fopt,s)>�(F ′,s). Therefore, we can now set F to
be F ′ and a straightforward induction argument completes our
proof. �

We now study the complexity of Algorithm 1. In order to simplify
our analysis we assume that all G∈G have approximately the same
size. The input for the ME problem is the set of gene trees G,
and species tree S. Let n=|Le(S)|, k =|G| and m=|Le(G)| for
some G∈G.

Theorem 3.2. The time complexity of Algorithm 1 is O(kmn).

Proof. Computing the LCA mapping for all the gene trees takes
O(kmn) time (Zhang 1997). With-in this time, the inverse LCA
mapping is also easily computed. All the intervals I(g) can be
computed in O(km) time. Now, at each node, s, in the species
tree, we must (i) find all the leading nodes in F−1(s), (ii) check
if these leading nodes are free and (iii) update the mapping F . Let
x=|F−1(s)|, then, each of the Steps (i), (ii) and (iii) above can
be completed in O(x) time. Hence, since x=O(km) and there are
O(n) nodes in the species tree, we obtain a total time complexity of
O(kmn) for Algorithm 1. �

4 EXPERIMENTAL RESULTS
We evaluated the efficacy and efficiency of our novel algorithm
for the ME problem through comparative studies on simulated
and empirical datasets. For this evaluation we implemented our
algorithm in the program ExactMGD. We compared our program
against the program ApproxMGD of Burleigh et al. (2008) that
implements the currently best known approach to solve the ME

problem.
Recall that the objective of the ME problem is to produce a

mapping which defines the fewest number of episodes. The smaller

Table 1. Performance of ExactMGD on simulated datasets

Dataset Unoptimized ApproxMGD ExactMGD

50 taxa 30 28 25
100 taxa 47 38 35
200 taxa 64 54 49
400 taxa 65 45 40

Table 2. Performance of ExactMGD on empirical datasets

Dataset Unoptimized ApproxMGD ExactMGD

Guigó et al. (1996) 9 7 5
Burleigh et al. (2008) 1180 1152 1042

the number of episodes, the more accurate the mapping. Therefore,
for each dataset we compared the programs by measuring three
values: (i) The number of episodes defined by the initial LCA
mapping (i.e. the unoptimized value), (ii) the number of episodes
defined by the mapping produced by ApproxMGD and (iii)
the number of episodes defined by the mapping produced by
ExactMGD. All analyses were performed on a 3 Ghz Intel
Pentium 4 CPU based PC with Windows XP operating system.
A run of ExactMGD on each of these datasets terminated in less
than 1s!

4.1 Simulated datasets
Our simulated datasets consist of 50 randomly generated gene
trees, all with the same set of taxa, along with a randomly
generated species tree.3 We generated four such datasets, each with
a different number of taxa (50, 100, 200 and 400) in the input
trees. ExactMGD shows a significant reduction in the number of
episodes as compared to ApproxMGD for each of the four datasets
(Table 1).

4.2 Empirical datasets
For the empirical study we evaluated two datasets from the literature.
The first dataset consists of 53 gene trees, each representing
the evolutionary history of different gene families from a set
of 16 eukaryotes. This set was assembled and evaluated for
episodes by Guigó et al. (1996). Subsequently, this dataset was
reused and its evaluation refined by Page and Cotton (2002). The
second dataset, assembled and evaluated for episodes by Burleigh
et al. (2008), consists of 85 gene trees from the Phytome
comparative plant genome database and contains genes from
136 plant taxa.

For brevity we refrain from performing biological analyses of our
results; and only demonstrate the exceptional level of improvement
offered by our algorithm over the best current methods. The results
depicted in Table 2 show that the mappings produced by our

3Our randomly generated trees have a random (binary) topology and a
random assignment of leaf labels.
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algorithm are significantly more optimal compared to the mappings
produced by the best current approaches. This leads to more accurate
inference of the location of gene and genome duplications on the
Tree of Life.

5 OUTLOOK AND CONCLUSION
In this article we have provided the first exact and efficient
algorithm for a longstanding open problem. Traditionally, the
multiple episodes problem has been used to infer the location of
episodes of multiple gene duplication on a given species tree.
Our new algorithm allows this to be done far more accurately.
But another interesting and important fallout of our algorithm
is that it may also allow us to infer the ‘correct’ species trees.
Consider the problem of constructing a species tree from conflicting
gene trees based on the gene duplication optimality criteria. The
gene duplication problem is to find for a given set of gene trees
a corresponding species tree with the minimum reconciliation
cost (Fellows et al., 1998a; Hallett and Lagergren, 2000; Ma et al.,
2000; Stege, 1999). However, since these gene duplication events
are usually a part of larger multiple gene duplication episodes, it
might be more helpful if we can infer species trees directly based on
the multiple gene duplication optimality criteria (see also Fellows
et al. 1998b). Our algorithm offers the first practical and effective
means to do so. The idea is to use a local search based hill
climbing heuristic to traverse through the search space of possible
species tree. Our algorithm can be used to compute the number of
episodes induced by each candidate species tree during the local
search steps. The lower the number of episodes, the better the
species tree.

In addition, it would be interesting to extend the multiple
GD model of Guigó et al. (1996) by relaxing the constraints
on the possible locations of gene duplications on the species
tree.
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