

There seems to be three different groups of students:

- A group around 6
- A group around 12
- A group around 16

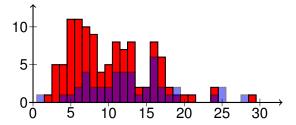
Fizik Bölümü

Department

→

Physics

ъ



There seems to be three different groups of students:

- A group around 6
- A group around 12
- A group around 16

Fizik Bölümü

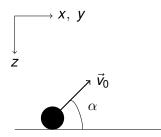
Department

→

Physics

ъ

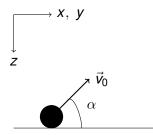
Trajectory of a Football



- Assume that you hit a football lying on the ground.
- It's initial speed is v₀ making an angle *α* with the ground.
- Choose the origin of time such that t_i = 0 and origin of coordinate axis such that x(0) = 0

Exam Result

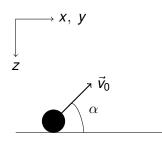
Trajectory of a Football



- $\vec{x}(t) = \vec{v}_0 t + \frac{1}{2}gt^2\hat{z}$
- $z(t) = v_{0z}t + \frac{1}{2}gt^2$
- z(t) = 0 when t = 0(initial time) and at $t = -\frac{2v_{0z}}{g}$ (when the ball hits the ground)

Altuğ Özpineci (METU)

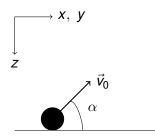
Trajectory of a Football



- The flight time of the ball is $t = -\frac{2v_{0z}}{a}$.
- The only acceleration is along the z axis.
- $-\frac{v_{0z}}{a}$ is the time it take for the z component of the velocity to become zero, i.e. the time it takes to reach maximum height
- The time it takes to fall down is the same (in the absence of air friction)

56 / 67

Trajectory of a Football



• Assume that x and y axis are chosen such that $\vec{v} = -v_0 \sin \alpha \hat{z} + v_0 \cos \alpha \hat{x}$

•
$$v_y(t) = 0, y(t) = 0$$
 for all times

•
$$x(t) = v_{0x}t$$
.

• Range is the distance the ball covers during its flight, i.e. $R = |x(t_f)|$

$$R = v_{0x} \left(-\frac{2v_{0z}}{g} \right)$$
$$= v_0 \cos \alpha \left(-\frac{2(-v_0 \sin \alpha)}{g} \right)$$
$$= \frac{v_0^2 \sin 2\alpha}{g}$$

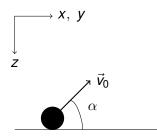
Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 56 / 67

Exam Result

Trajectory of a Football



Altuğ Özpineci (METU)

• $R = \frac{v_0^2 \sin(2\alpha)}{g}$

Phys109-MECHANICS

- $\sin 2\alpha$ has maximum value of 1 when $\alpha = 45^{\circ}$
- Increasing v₀ by a factor of 2 increases the range by 4.
- If $\alpha_1 + \alpha_2 = \frac{\pi}{2}$, their ranges are the same

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Department

Physics

PHYS109

Fizik Bölümü

56/67

Trajectory

- Trajectory is a relationship between the components of the position of a particle that does not involve time.
- When the particle is at the horizontal distance *x*, the time that has passed is $t(x) = x/v_{0x}$.
- The *z* coordinate of the particle at that time is

$$z(x) = v_{0z}t(x) + \frac{1}{2}gt(x)^{2}$$

= $v_{0z}\left(\frac{x}{v_{0x}}\right) + \frac{1}{2}g\left(\frac{x}{v_{0x}}\right)^{2}$
= $\frac{g}{2v_{0}^{2}\cos^{2}\alpha}x(x-R)$ (29)

Altuğ Özpineci (METU)

Fizik Bölümi

Department

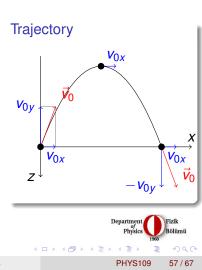
Physics

Trajectory

- Trajectory is a relationship between the components of the position of a particle that does not involve time.
- When the particle is at the horizontal distance *x*, the time that has passed is $t(x) = x/v_{0x}$.
- The *z* coordinate of the particle at that time is

$$z(x) = v_{0z}t(x) + \frac{1}{2}gt(x)^{2}$$

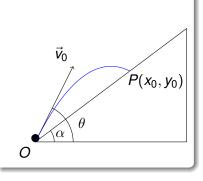
= $v_{0z}\left(\frac{x}{v_{0x}}\right) + \frac{1}{2}g\left(\frac{x}{v_{0x}}\right)^{2}$
= $\frac{g}{2v_{0}^{2}\cos^{2}\alpha}x(x-R)$ (29)



Third Week

Exam Result

Example



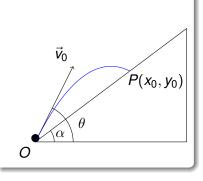
• **Q:** What is the distance |*OP*|?

Altuğ Özpineci (METU)

Third Week

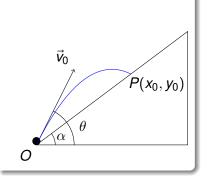
Exam Result

Example



• **Q:** What is the distance |*OP*|?

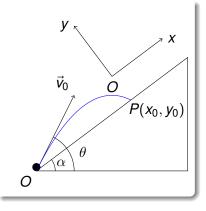
Altuğ Özpineci (METU)



- **Q:** What is the distance |*OP*|?
- To find the point *P*, we will use the fact that point *P* is both on the parabola describing the trajectory, and also on the line that describes the hill.

A b

Altuğ Özpineci (METU)

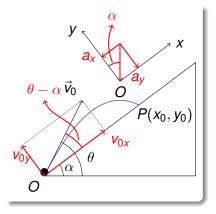


- **Q:** What is the distance |*OP*|?
- First choose a coordinate axis.

Altuğ Özpineci (METU)

Phys109-MECHANICS

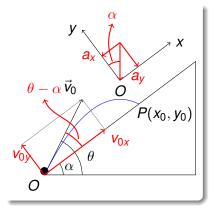
58/67



- **Q:** What is the distance |*OP*|?
- First choose a coordinate axis.
- The initial velocity and acceleration in these new coordinate axes are:

$$ec{m{v}_0} = m{v}_0 \cos(heta - lpha) \hat{m{x}} + m{v}_0 \sin(heta - lpha) \hat{m{y}}$$

$$\vec{a} = g \cos \alpha(-\hat{y}) + g \sin \alpha(-\hat{x})$$



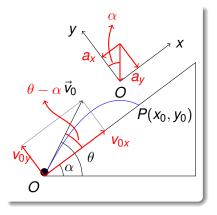
- **Q:** What is the distance |*OP*|?
- The velocity at time *t* can be obtained as

$$\vec{v}(t) = \vec{v}_0 + \int_0^t \vec{a}(t')dt' = \vec{v}_0 + t\vec{a}$$
$$= [v_0 \cos(\theta - \alpha) - gt \sin\alpha]\hat{x}$$
$$+ [v_0 \sin(\theta - \alpha) - gt \cos\alpha]\hat{y}$$

Third Week

Exam Result

Example



- **Q:** What is the distance |*OP*|?
- The velocity at time *t* can be obtained as

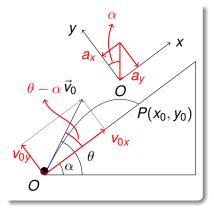
$$\vec{v}(t) = \vec{v}_0 + \int_0^t \vec{a}(t')dt' = \vec{v}_0 + t\vec{a}$$
$$= [v_0\cos(\theta - \alpha) - gt\sin\alpha]\hat{x}$$
$$+ [v_0\sin(\theta - \alpha) - gt\cos\alpha]\hat{y}$$

• The position at time t is

$$\vec{r}(t) = \vec{r}_0 + \int_0^t \vec{v}(t') dt'$$

ъ

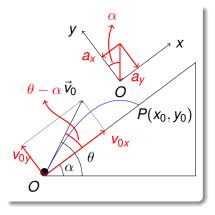
PHYS109 58 / 67



Q: What is the distance |OP|?
The position at time t is

$$\vec{r}(t) = \vec{r}_0 + \int_0^t \vec{v}(t') dt'$$
$$= \left[v_0 t \cos(\theta - \alpha) - \frac{1}{2} g t^2 \sin \alpha \right] \hat{x}$$
$$+ \left[v_0 t \sin(\theta - \alpha) - \frac{1}{2} g t^2 \cos \alpha \right] \hat{y}$$

PHYS109 58 / 67



Q: What is the distance |OP|?
Hence, if the object reaches the point P at time t₀,

$$x_0 = v_0 t_0 \cos(\theta - \alpha) - \frac{1}{2}gt_0^2 \sin \alpha$$

$$y_0 = v_0 t_0 \sin(\theta - \alpha) - \frac{1}{2}gt_0^2 \cos \alpha$$
(30)

イロト イヨト イヨト イヨト

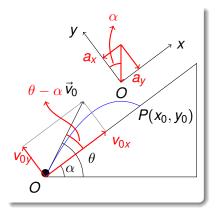
Altuğ Özpineci (METU)

PHYS109 58 / 67

Fizik Bölümü

Department

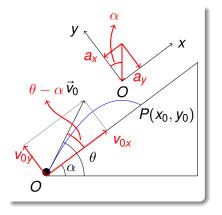
Physics



- Q: What is the distance |OP|?
- At point P, $y_0 = 0$

$$v_0 t_0 \sin(\theta - \alpha) - \frac{1}{2}gt_0^2 \cos \alpha = 0$$
 (30)

which has solutions $t_0 = 0$ or $t_0 = \frac{2v_0 \sin(\theta - \alpha)}{g \cos \alpha}$



Q: What is the distance |OP|?
At point P, y₀ = 0

$$v_0 t_0 \sin(\theta - \alpha) - \frac{1}{2}gt_0^2 \cos \alpha = 0 \quad (30)$$

which has solutions $t_0 = 0$ or $t_0 = \frac{2v_0 \sin(\theta - \alpha)}{g \cos \alpha}$

 t₀ = 0 is the beginning of motion. The second solution is the solution we are looking for.

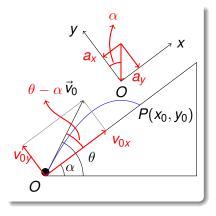
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

PHYS109 58 / 67

Fizik Bölümü

Department

Physics



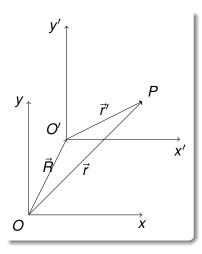
Q: What is the distance |OP|? • The distance $|OP| = x_0$. • Using $t_0 = \frac{2v_0 \sin(\theta - \alpha)}{\alpha \cos \alpha}$ $x_0 = v_0 \left(\frac{2v_0 \sin(\theta - \alpha)}{g \cos \alpha}\right) \sin(\theta - \alpha)$ $-\frac{1}{2}g\left(\frac{2\nu_0\sin(\theta-\alpha)}{\alpha\cos\alpha}\right)^2\cos\alpha$ (30)

イロト イヨト イヨト イヨト

PHYS109 58 / 67

Fizik Bölümü

Department of Physics

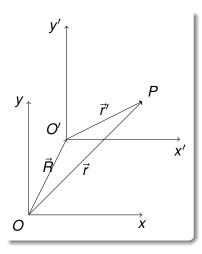


- From the definition of vector addition $\vec{r} = \vec{R} + \vec{r}'$.
- The displacement of the point *P* in a time △t is

$$\Delta \vec{r} = \Delta \vec{R} + \Delta \vec{r}' \qquad (31)$$

• The velocities in the two reference frames are related by $\vec{v} = \vec{v}' + \vec{V}$

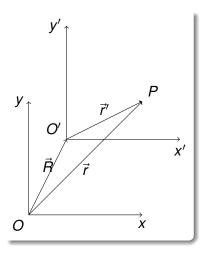
Altuğ Özpineci (METU)



- From the definition of vector addition $\vec{r} = \vec{R} + \vec{r}'$.
- The displacement of the point *P* in a time ∆*t* is

$$\Delta \vec{r} = \Delta \vec{R} + \Delta \vec{r}' \qquad (31)$$

• The velocities in the two reference frames are related by $\vec{v} = \vec{v}' + \vec{V}$



- From the definition of vector addition $\vec{r} = \vec{R} + \vec{r}'$.
- The displacement of the point *P* in a time ∆*t* is

$$\frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta \vec{R}}{\Delta t} + \frac{\Delta \vec{r}'}{\Delta t}$$
(31)

• The velocities in the two reference frames are related by $\vec{v} = \vec{v}' + \vec{V}$

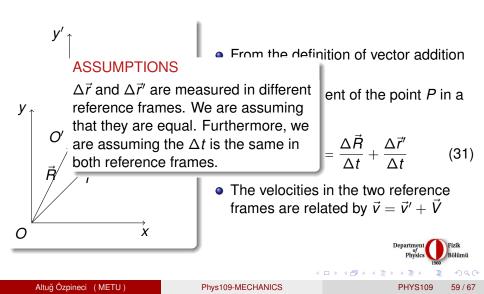
PHYS109 59 / 67

Fizik

Rölümü

Department

Physics

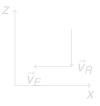


Question 3.78

Raindrops make an angle θ with the vertical when viewed through a moving train window. If the speed of the train is \vec{v}_{T} , what is the speed of the raindrops in the reference frame of the Earth in which they are assumed to fall vertically?

Solution:

Let $\vec{v}_R = -v\hat{z}$ be the speed of the raindrops in the reference frame of Earth, \vec{v}_E be the velocity of the Earth relative to the train, i.e. $\vec{v}_E = -\vec{v}_T$.

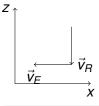


Question 3.78

Raindrops make an angle θ with the vertical when viewed through a moving train window. If the speed of the train is \vec{v}_{T} , what is the speed of the raindrops in the reference frame of the Earth in which they are assumed to fall vertically?

Solution:

Let $\vec{v}_R = -v\hat{z}$ be the speed of the raindrops in the reference frame of Earth, \vec{v}_E be the velocity of the Earth relative to the train, i.e. $\vec{v}_E = -\vec{v}_T$.

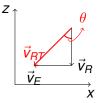


Question 3.78

Raindrops make an angle θ with the vertical when viewed through a moving train window. If the speed of the train is \vec{v}_{T} , what is the speed of the raindrops in the reference frame of the Earth in which they are assumed to fall vertically?

Solution:

Let $\vec{v}_R = -v\hat{z}$ be the speed of the raindrops in the reference frame of Earth, \vec{v}_E be the velocity of the Earth relative to the train, i.e. $\vec{v}_E = -\vec{v}_T$.



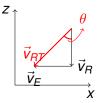
• Let \vec{v}_{RT} be the velocity of the raindrops relative to train

Question 3.78

Raindrops make an angle θ with the vertical when viewed through a moving train window. If the speed of the train is \vec{v}_{T} , what is the speed of the raindrops in the reference frame of the Earth in which they are assumed to fall vertically?

Solution:

Let $\vec{v}_R = -v\hat{z}$ be the speed of the raindrops in the reference frame of Earth, \vec{v}_E be the velocity of the Earth relative to the train, i.e. $\vec{v}_E = -\vec{v}_T$.



- It is given that *v
 _{RT}* makes θ radians with respect to the vertical
- From the figure, it is seen that

$$\tan \theta = \frac{v_E}{v_R} \Longrightarrow v_R = v_T \cot \theta \quad (32)$$

Reference Frames

event: position+time

- A reference frame is a coordinate axis (to measure the position of an event)
- And a clock at each point of space (to measure the time of an event)

Reference Frames

- event: position+time
- A reference frame is a coordinate axis (to measure the position of an event)
- And a clock at each point of space (to measure the time of an event)

Reference Frames

- event: position+time
- A reference frame is a coordinate axis (to measure the position of an event)
- And a clock at each point of space (to measure the time of an event)

Exam Result

Dynamics-Newton's Laws of Motion

1st Law: In an inertial reference frame, in the absence of any external influences, the velocity of an object is constant

Altuğ Özpineci (METU)

Exam Result

Dynamics-Newton's Laws of Motion

1st Law: In an inertial reference frame, in the absence of any external influences, the velocity of an object is constant This is a definition of an inertial reference frame

Altuğ Özpineci (METU)

Inertial Reference Frame

- To test if a given reference frame is inertial, consider a test object
 - Eliminate all external influecens.
 - · Check to see if the object accelerates or not
 - If the object is not accelerating, that reference frame is an inertial reference frame
- Given one inertial reference frame, any other frame that moves at constant velocity relative to the inertial reference frame is inertial:

$$\vec{\nu} = \vec{V} + \vec{v}' \tag{33}$$

Department of Physics

PHYS109

63/67

 If a given reference frame is an inertial reference frame, all objects obey Newtons 1st law in that frame

Altuğ Özpineci (METU)

Exam Result

Dynamics-Newton's Laws of Motion

 2^{nd} Law: In an inertial reference frame, the acceleration of an object is proportional to the force acting on the object. The proportionality constant is $\frac{1}{m}$ where *m* is the mass of the object

$$\vec{a} = \frac{\vec{F}}{m} \tag{34}$$

 3^{rd} Law: If an object *A* exerts a force \vec{F}_{AB} on another object *B*, then object *B* also exerts a force \vec{F}_{BA} on object *A* whose magnitude is equal to the magnitude of \vec{F}_{AB} , but opposite in direction:

$$\vec{F}_{AB} = -\vec{F}_{BA} \tag{35}$$

PHYS109 64 / 67

Department

 2^{nd} and 3^{rd} laws define the mass of an object

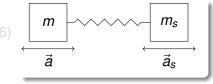
• By the 3rd law, the magnitudes of the force acting on the standard mass and the unknown mass are equal:

• Using 2nd law:

 $ma = m_s a_s$

 Accelerations can be measured experimentally. Hence the unknown mass can be obtained as:

$$m = m_s \frac{a_s}{a}$$



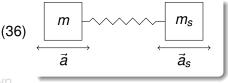
 2^{nd} and 3^{rd} laws define the mass of an object

- By the 3rd law, the magnitudes of the force acting on the standard mass and the unknown mass are equal:
- Using 2nd law:

$$ma = m_s a_s$$

 Accelerations can be measured experimentally. Hence the unknown mass can be obtained as:

$$m = m_s \frac{a_s}{a}$$



Altuğ Özpineci (METU)

 2^{nd} and 3^{rd} laws define the mass of an object

- By the 3rd law, the magnitudes of the force acting on the standard mass and the unknown mass are equal:
- Using 2nd law:

$$m = m_s \frac{a_s}{a} \tag{37}$$

$$(36) \xrightarrow[]{m} \xrightarrow[]{n} \xrightarrow[$$

Altuğ Özpineci (METU)

PHYS109 65 / 67

Bölümi

Department

Physic

- Once the mass is defined, 2nd Law can be considered as the definition of the force.
- Also, if the force is given (by some means), the second law can be used to obtain acceleration.

