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ABSTRACT

Motivation: Several recent methods have addressed the problem of

heterogeneous data integration and network prediction by modeling

the noise inherent in high-throughput genomic datasets, which can

dramatically improve specificity and sensitivity and allow the robust

integration of datasets with heterogeneous properties.

However, experimental technologies capture different biological

processes with varying degrees of success, and thus, each source

of genomic data can vary in relevance depending on the biological

process one is interested in predicting. Accounting for this variation

can significantly improve network prediction, but to our knowledge,

no previous approaches have explicitly leveraged this critical

information about biological context.

Results: We confirm the presence of context-dependent variation in

functional genomic data and propose a Bayesian approach for

context-sensitive integration and query-based recovery of biological

process-specific networks. By applying this method to

Saccharomyces cerevisiae, we demonstrate that leveraging con-

textual information can significantly improve the precision of network

predictions, including assignment for uncharacterized genes. We

expect that this general context-sensitive approach can be applied

to other organisms and prediction scenarios.

Availability: A software implementation of our approach is available

on request from the authors.

Contact: ogt@genomics.princeton.edu

Supplementary information: Supplementary data are available at

http://avis.princeton.edu/contextPIXIE/

1 INTRODUCTION

Recent developments in biological technology have fueled the

generation of numerous large genomic and proteomic datasets

for several organisms. These data capture a wide range of

biological phenomena including gene expression, genetic

interactions, physical interactions between proteins and
sequence content. Many recent studies have shown that high-

throughput data are often quite noisy and have varying degrees

of reliability or relevance for understanding biological networks

(Bader et al., 2004; Deng et al., 2003; Sprinzak et al., 2003).

To address this heterogeneity and harness the wealth of
information present in the data, several groups have designed

methods for data integration to combine information from

multiple sources of genomic or proteomic evidence in order to

arrive at accurate and holistic network and gene predictions.

For instance, Troyanskaya et al. used expert-based Bayesian

networks for inferring functional interactions between pairs of

proteins given observed experimental data supporting those

interactions (Troyanskaya et al., 2003). Other studies have

extended this idea by applying more sophisticated Bayesian

approaches and other methods, most of which automatically

learn reliability characteristics from the data given a trusted

gold standard (Jaimovich et al., 2005; Jansen et al., 2003; Lee

et al., 2004; Qi et al., 2005; von Mering et al., 2003). In general,

all of these methods assess the reliability of input high-

throughput genomic data and use these characteristics for

more robust integration, which typically offers significant

improvement in terms of both sensitivity and specificity in

predicting protein–protein interactions or functional

relationships.

While these earlier approaches to data integration address

the heterogeneity in reliability among different datasets, they all

fail to utilize one important source of variation: biological

context. Most experiments are designed with a particular

process or pathway in mind. For instance, a researcher studying

meiosis in yeast might profile gene expression under specific

conditions (e.g. in sporulation media) that result in a clear

meiotic signal in the data but very little reliable information

about the mitotic cell cycle. Furthermore, most experimental

technologies target specific biological processes simply because

of how they physically measure biological phenomena. Yeast

two-hybrid technology for identifying interacting proteins,

for example, relies on the two-domain structure of eukaryotic

transcription factors to report an interaction. A two-hybrid

positive interaction is obtained by fusing one protein to

a DNA-binding domain (bait) while another protein is fused

to an activation domain such that binding of the two proteins

of interest ‘switches on’ transcription of a reporter gene

(Phizicky and Fields, 1995). Thus, while two-hybrid results

are generally informative for proteins which can be targeted to

the nucleus, we should expect very little reliable information

about membrane proteins or proteins with domains that

prevent them from entering the nucleus. In fact, if an

interaction including such a protein is reported, we should

confidently reject it as a false positive.*To whom correspondence should be addressed.
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We have explicitly measured context-dependent variation

for a wide variety of public, genomic data for Saccharomyces

cerevisiae (baker’s yeast), including a large number of micro-

array datasets, protein–protein interaction data and sequence

data. Specifically, for each source of functional genomic

data we measured precision-recall characteristics for a set

of experimentally relevant Gene Ontology (GO) terms covering

a broad range of biological processes (Myers et al., 2006)

(Fig. 1). This analysis demonstrates that most datasets

have a broad range of precision-recall characteristics

depending on which processes they are compared against.

More importantly, we find that the relative ordering of genomic

data in terms of quality varies dramatically from process

to process, suggesting the degree to which we should trust

any dataset depends on the process we are interested in

predicting.
While this context-dependent variation is not surprising

given the inherent bias of different experimental techniques

toward particular processes and different goals and conditions

under which the data was measured, to our knowledge, no

previous computational approaches for heterogeneous data

integration or network prediction have explicitly leveraged this

information. We demonstrate here that incorporating

information about biological context in the integration and

prediction process can significantly boost precision and

sensitivity. We develop a system for predicting process-specific

networks from diverse genomic data that uses biological

context information to improve the recovery of known

networks from integrated experimental data. We compare our

contextual approach to our earlier work, which uses prior

knowledge of gene function as a gold standard, but does not

specifically leverage biological context (Myers et al., 2005), and

demonstrate that considering context can yield a dramatic

benefit. While we illustrate the effect of biological context for a

specific method for network prediction here, we demonstrate

that such context-specificity has a dramatic effect on dataset

reliability and thus we expect that the general idea can be used

to improve predictions in a variety of settings and for many

organisms.

2 METHODS

The objective of our approach is, given a diverse set of genomic data, to

recover a process-specific network starting from a small related set of

query proteins. Such algorithms have proven to be practical approaches

for expert-driven search of genomic data, largely because they harness

Fig. 1. Dataset relevance across different biological contexts. We measured the relevance of several S.cerevisiae genomic datasets for predicting

function in a range of biological contexts (GO terms) using our previously published evaluation framework (Myers et al., 2006). A selection of the

datasets used in our integration appear on the rows, and contexts appear on the columns. The intensity of each square reflects the area under a

precision-recall curve (AUPRC) for each dataset in the corresponding context. The relevance of each dataset varies substantially both in terms of

precision and sensitivity across biological processes, and thus the relative weighting of data during integration depends critically on the context. For

example, if one were interested in predicting proteins involved in ribosome biogenesis, any of the three gene expression datasets would be informative.

If one were interested in chromosome organization, these data might offer little reliable information as compared to one of the two-hybrid datasets

(e.g. Drees et al., 2001).
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information from all available evidence in a robust way while also

providing an intelligent interface for discovering functional modules

and extracting the relevant portion of the interaction network (Myers

et al., 2005). This general approach of incorporating expert direction in

the prediction process is particularly attractive because it offers a

convenient method of learning the biological context and leveraging

this information to arrive at more precise predictions. Our solution

based on this premise can be divided into two distinct components: a

data integration phase that forms a probabilistic protein–protein

network as supported by experimental data, and a network search

algorithm that, given the probabilistic network, recovers additional

relevant proteins starting from a query set (Fig. 2). Both phases of the

network prediction process utilize information about biological context,

which is inferred from the starting query set.

2.1 Bayesian context-specific integration

The integration phase consists of a Bayesian network, which captures

the context-dependent reliability variation to integrate the diverse input

data. The result of this phase is a probabilistic protein–protein

interaction network reflecting the reliability of the supporting data in

a given biological context. The input data used here and the details of

the Bayesian network are described below.

2.1.1 Genomic input data We have collected genomic data for

S.cerevisiae from over 6500 publications, including gene expression,

literature-curated and high-throughput protein-protein and genetic

interactions (Alfarano et al., 2005; Stark et al., 2006), protein

localization data (Huh et al., 2003), transcription factor binding site

data (Harbison et al., 2004; Zhu and Zhang, 1999) and sequence data

(SGD, 2006). See the Supplementary Material for a detailed description

of how each data type was processed. The processed input data

was separated first by experimental method responsible for producing

the data, then by publication. To ensure that each input dataset

had a reasonable number of observations for learning, publications

with fewer than 50 observations were merged with other publica-

tions reporting results from the same experimental method. This

process resulted in 174 different input data types for Bayesian

integration.

2.1.2 Bayesian network The goal of our integration scheme is to

harness the information from the diverse data while not sacrificing

precision. Furthermore, the integration is designed such that it can

model and exploit the context-dependent relevance variation discussed

earlier. Because many of the input data types represent functional

interactions (either physical or other) between pairs of genes or

proteins, we have adopted the approach of predicting functional

associations. This approach has been used in several earlier studies

(Jaimovich et al., 2005; Jansen et al., 2003; Lee et al., 2004; von Mering

et al., 2003), and the final integrated protein–protein linkage network is

convenient for understanding and predicting network structure, which

is our goal here. Several methods for associating proteins directly with

processes or functional classes (function prediction) have also been

applied successfully (Barutcuoglu et al., 2006; Lanckriet et al., 2004;

Letovsky and Kasif, 2003), but are less appropriate for the goal of

network analysis and prediction.

Starting with the goal of predicting functional associations between

genes, there are several choices of machine-learning methods that might

be appropriate. Here, we employ a Bayesian network because it is

robust to diverse forms of input data, and it yields a generative model

that is useful in terms of drawing relevant biological conclusions about

the properties of the input data. Furthermore, a Bayesian framework is

a convenient setting for incorporating contextual information as is

illustrated below.

The simplest Bayesian approach for integration is to assume

independence between all of the input datasets given knowledge of a

functional relationship between any pair of proteins. In practice, this

approach is quite powerful for genomic data and is competitive with

more sophisticated alternatives, including methods where dependence

among datasets is modeled [e.g. tree-augmented Bayesian networks

(Friedman et al., 1997), see Supplementary Material]. We begin with the

naive approach and extend it to include contextual information as

illustrated in Figure 3. Each input dataset is modeled with a discrete

probability distribution conditioned on the presence or absence of a

functional relationship and the biological context. Given a gold

standard which associates observed data with known functional

relationships and biological context (described in detail in the following

section), we estimate the conditional distribution for each input

dataset by simple counting. With these learned parameters, given a

new protein–protein pair with observed data and a corresponding

context (derived from the query as described below), we can then

infer the probability of functional relationship between the two

proteins, i.e.

P FRij

��D1
ij,D

2
ij, . . . ,D

k
ij,Cij

� �
¼ �P FRij

��Cij

� �Yk
n¼1

P Dn
ij

���FRij,Cij

� �

where

P Dn
ij ¼ d

���FRij ¼ f,Cij ¼ c
� �

¼
# Dn

ij ¼ d ^ FRij ¼ f ^ Cij ¼ c
� �

# FRij ¼ f ^ Cij ¼ c
� � :

Here FRij refers to the presence or absence of a functional relationship

between proteins i and j, Dn
ijrefers to the observed association in dataset

n between the proteins i and j, Cij is the biological context of the pair

and � is a normalization constant.

Fig. 2. Overview of method for context-sensitive integration and

prediction. Our approach is developed for the scenario where a user

enters a query set of proteins and wishes to obtain a relevant network

prediction based on a diverse set of experimental evidence. The method

consists of two stages, the first a Bayesian network for data integration

and the second a network recovery algorithm which uses the

probabilistic network from the first stage to recover the network

surrounding the entered query. The biological context of a prediction is

inferred from the entered query set, and this information is fed into

both stages to improve prediction precision.
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2.1.3 Gold standard for Bayesian integration The gold stan-

dard used in estimating the parameters for the Bayes net is a critical

part of the prediction process. The gold standard used here is based on

the biological process branch of the Gene Ontology (Ashburner et al.,

2000) as proposed in Myers et al. (2006). For the global (non-

context-sensitive) approach described here, we directly used the

protein–protein pairwise standard for functional relationships

published in Myers et al. as our global (non-context-sensitive) standard

for functional relationship. For the context-sensitive approach,

we require a gold standard that associates positive and negative

examples of functionally related pairs of proteins to a set of biological

contexts. For this, we used the non-redundant set of specific GO terms

published in Myers et al. (2006), which is a set of terms spanning the

entire process ontology at a specificity sufficient for inferring useful

functional information as curated by biology researchers. Specifically,

we chose the 101 largest of these terms (those with more than

20 annotations), as the space of all possible contexts (c1 , . . . , cn).

Positive examples for each context were derived by forming all possible

pairs of proteins annotated to the corresponding term. Negatives were

sampled from the negative gold standard described in Myers et al.

(2006) as discussed in detail in the Supplementary Material. During the

inference process, context is inferred from the entered query proteins by

mapping to the term in this comprehensive set containing the maximum

number of proteins in the query.

2.2 Context-sensitive network recovery algorithm

The problem of recovering a network from a starting query set given a

probabilistic interaction graph of proteins has been addressed in

previous work (Asthana et al., 2004; Bader, 2003; Can et al., 2005;

Myers et al., 2005). Approaches to this problem range from random

walks on the probabilistic network (Can et al., 2005), to methods based

in network reliability theory (Asthana et al., 2004), to variations of

maximum adjacency (Bader, 2003; Myers et al., 2005). We find that the

performance of such methods often depends on the sparsity of the

starting network, and it is difficult to find one that always provides

superior performance. We describe an approach here that performs

favorably on our probabilistic network, but emphasize that the larger

point of incorporating biological context is independent of the specific

network recovery algorithm used. Our network recovery algorithm

consists of two steps: (1) a feature selection step that, given a query set

of genes, determines a ‘characteristic’ interaction profile for that group,

and (2) a pattern-matching step that finds additional proteins matching

the characteristic profile.

2.2.1 Feature selection Let Q be the query set of proteins of size

NQ chosen out of the entire proteome consisting of NT proteins, and let

pij ¼ P FRij

��D1
ij,D

2
ij, . . . ,D

k
ij,Cij

� �
be the probability of functional rela-

tionship between proteins i and j in the current biological context. Our

goal is to select a set of features which are predictive of proteins related

to the query set. Here, we treat each protein’s interaction probabilities

as a set of features, and thus feature selection is equivalent to finding a

set of interaction partners which are common and discriminative of the

query set. For each possible feature, k, we compute:

NQ,k tð Þ ¼ j 2 Q : pij4t
� ��� ��

NT,k tð Þ ¼ j : pij4t
� ��� ��

where t is a threshold on the interaction probabilities. We can then

assign a P-value measuring the significance of the association between

feature k and the query set using the hypergeometric distribution, i.e.

fk tð Þ ¼ 1�
XNQ,i tð Þ

n¼0

NQ

n

� 	
NT �NQ

NT,i tð Þ � n

� 	

NT
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For each feature, we compute this P-value over a range of interaction

probability thresholds and select the minimum. The selected features

are then given by F ¼ k 2 f1,2, . . . ,NTg : min
t

fk tð Þ50:05
n o

.

2.2.2 Pattern matching During the pattern-matching phase, we

identify remaining genes whose interaction profiles match the

characteristic profile determined during the feature selection phase.

Given the query set, Q and selected features, we add proteins to the

predicted network based on their similarity to the query proteins over

the set of relevant features, F. Specifically, each candidate protein, i, is

ranked according to the following adjacency score:

Si ¼
X
j2Q

X
k2F

pik pjk

This metric ensures that only relevant features are used in predicting the

final network, and each relevant feature (protein interaction) is

weighted by our confidence in that particular interaction. Intuitively,

this two-step approach of graph feature selection and pattern-matching

identifies a set of informative neighbors in the interaction network and

ranks candidate proteins by measuring adjacency to the query set on

paths through these informative neighbors.

3 RESULTS

We demonstrate the importance of considering biological

context for predicting biological networks by comparing our

contextual approach with a simpler version that does not use

information about biological context. Specifically, we replaced

the context-sensitive Bayesian network illustrated in Figure 3

with a simple, naive structure with no context node. For all

experiments described here, both approaches start with a query

set of proteins and use the same network recovery procedure,

Fig. 3. Bayesian network for context-sensitive integration. The data

integration stage of our context-sensitive approach consists of a

Bayesian network, which is used to integrate pairwise protein–protein

association data to arrive at a single, probabilistic network. Biological

context information is incorporated into the integration process by

conditioning the probability distributions of each type of observed

genomic data on both the presence or absence of a functional

relationship between the pair of proteins in question and the biological

context of interest. This structure captures both the inherent dataset

quality as well as the relevance variation from one biological

process to another. Evidence nodes are assumed to be discrete,

and conditional probability tables (CPT’s) are automatically learned

from the data using a gold standard based on the biological process

branch of the GO.
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such that the only difference between the two is the presence or

absence of contextual information during data integration.
We compared the simpler version of our method (with no

contextual information) to existing approaches for network

recovery (Asthana et al., 2004; Bader, 2003) in our previous

publication (Myers et al., 2005). In summary, the non-

contextual version of our method outperforms existing

approaches for network recovery in terms of both precision

and recall on a wide range of biological processes, complexes

and pathways. The details of this comparison are summarized

in the Supplementary Material. Evaluation results presented

here illustrate further improvement offered by incorporating

context information during integration and network recovery.

3.1 Contextual network recovery evaluation

Perhaps the most important question to address with evalua-

tion experiments is: does incorporating biological context

information improve network prediction? To answer this

question, we performed cross-validation experiments on

S.cerevisiae data for both our context-sensitive approach and

the simpler non-contextual Bayesian integration and search

algorithm. Specifically, for each of the GO terms in the

evaluation gold standard (Myers et al. 2006), we withheld one-

half of the annotated proteins for network recovery evaluation.

The other half was used in training both Bayesian network

configurations (with and without context nodes). Positive and

negative examples (protein pairs) for the non-contextual

configuration were derived as described in Myers et al.

(2006). For the context-specific case, we obtained positive

protein pairs for each context by considering all pairs between

proteins annotated to the corresponding GO terms, except

those selected in the corresponding cross-validation fold, as

positive examples. To maintain the same ratio of positives to

negatives, negative examples were sampled from the negatives

described in Myers et al. (2006). Details on the training example

selection are discussed in the Supplementary Material.

On the proteins held out in each cross-validation fold, query

sets of 10 proteins each were randomly sampled from each GO

term, and we attempted to recover the remaining proteins with

both the context-sensitive and general approaches. All results

presented here are averaged over 20 random query set

samplings and two folds of cross-validation.
We start by considering network recovery results for the

RNA splicing context. Our context-sensitive integration and

recovery dramatically improves both the precision and sensi-

tivity of network recovery for RNA splicing proteins (Fig. 4).

For example, starting with 10 randomly chosen RNA splicing

proteins, the context-sensitive approach recovers an average of

25 proteins correctly in the first 50 predictions, while the global

approach only recovers 15 proteins. Figure 4B and C illustrates

the results of the same 5-protein query for both methods at the

indicated point on the recovery performance curves. For this

particular query, the context-sensitive prediction reports only 6

false positives resulting in 80% precision while the global

network reports 22 false positives resulting in 27% precision.

Both approaches are substantially better than random in terms

of predictive power, but the contextual information clearly

offers an improvement.

This improvement gained by using contextual information is

consistent over a broad range of biological processes. We

performed a similar evaluation to that described above for

RNA splicing for 101 total GO terms from the evaluation set

(Myers et al., 2006). The results of this evaluation for a range

of predicted network sizes are summarized in Supplementary

Table 1. As each approach added proteins to the predicted

network, we measured the number of predicted, held-out true

positives and averaged these estimates over several randomly

sampled query sets. At each network size increment, we

compared the average number of recovered true positive

proteins for the context-sensitive versus global approaches

and summarized the improvement over the set of evaluation

GO terms for which both methods recovered at least 2 true

positives (53 out of the 101 evaluation terms). For example,

for networks of 40 recovered proteins (from a query of 10

proteins), the context-sensitive approach improved 51% of the

GO terms by more than 2 SDs (estimated from random query

samplings). Conversely, the context-sensitive approach resulted

in a deterioration of the performance by more than 2 SDs on

only 8% of the GO terms. The average improvement in the

number of true positives recovered across all terms for size 40

networks is 46%. This comparison is summarized in Figure 5.

The improvement offered by context-sensitive integration and

prediction is consistent across a range of network sizes (see

Table 1 in the Supplementary Material for a complete

performance comparison).

3.2 Comparing dataset relevance across contexts

After confirming superior performance of the context-sensitive

approach for a variety of biological processes, we investigated

reasons for this improvement. The most informative aspect of

our results is the learned parameters of the context-sensitive

Bayesian network, which is designed to capture the relevance

variation that motivated our approach. If our original

observation of context-dependent relevance variation is correct,

we expect to observe differences in the learned conditional

probability distributions. To measure these differences, we

computed P (FR|Di, Cj), the posterior probability of a

functional relationship given an observation from a single

dataset, Di, across a range of biological contexts, Cj. To obtain

a single measure reflecting the relevance of each dataset in each

context, we then found the maximum posterior over all possible

quantized observations for a given dataset. Comparing this

posterior for several contexts to the same posterior inferred by

the non-contextual Bayesian network yields insight into how

dataset relevance variation is captured across different contexts.

Figure 6 illustrates this comparison for 13 of the total 174 input

datasets and two biological contexts: RNA splicing

(GO:0008380) and Phosphorus metabolism (GO:0006793).

The global network reports dataset relevance (posterior

probability of FR) as inferred by the simpler Bayesian network

(with no contextual information). As is demonstrated in

the figure, there are several datasets for which the posterior

from the global network is much larger than both contexts

[e.g. ER-Golgi co-localization (Huh et al., 2003), Martin et al.

(2004) microarray] suggesting these datasets are generally quite

reliable but contain little information about either RNA

C.L.Myers and O.G.Troyanskaya
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splicing or phosphorus metabolism. Conversely, there are some

datasets that appear relatively unreliable on the global scale,

but are actually quite precise when examined in a specific

context. For instance, all three protein–protein interaction

datasets pictured are up-weighted in the RNA splicing context,

particularly the Gavin et al. TAP-MS (2006) interaction data,

which measures a maximum posterior of 0.72 for the RNA

splicing context compared to a 0.22 posterior in the simpler

Bayesian network. From a biological standpoint, perhaps this is

not too surprising since a large portion of the RNA splicing

term is composed of the spliceosome complex, which would be

readily detectable with physical binding assays. These protein–

protein interaction datasets have no extra relevance for the

phosphorus metabolism, but all of the microarray datasets

included in Figure 6 are up-weighted in the phosphorus

metabolism context, particularly the Epstein et al. dataset,

which profiled several mitochondrial perturbations.
These differences between the global and context-specific

posteriors are not limited to these 13 datasets, but occur in

many of the datasets included in our integration (see Fig. S4

in Supplementary Material). Interestingly, there are a large

number of datasets that have reasonably high posteriors in the

global setting with near zero posteriors in the specific contexts.

This suggests that many datasets either contain little or very

unreliable information for these contexts. This knowledge is

actually quite useful for improving predictions for a specific

context, because it means we can confidently exclude a number

of observations from the corresponding datasets as false

positives. Generally, the chances of making a false positive

prediction are high simply because there are many more

negative examples (proteins) than positive for network predic-

tion problems. Thus, any reliable means of excluding false

positives is an effective strategy for improving prediction

performance.

3.3 Learning new biology using contextual information

We have shown through cross-validation experiments that

using contextual information can generally improve the quality

of network prediction, but these results are based on held-out,

known annotations for genes or proteins. An interesting

(a)

(b)

(c)

Fig. 4. RNA splicing network recovery example. We compared the

ability of the context-sensitive and global approaches to recover known

networks of proteins using cross-validation experiments. Specifically,

we started with a set of GO terms covering a wide range of biological

processes (Myers et al., 2006), and measured each method’s ability to

recover held-out proteins given 10-protein queries from the same

process. As proteins are added to the predicted network, we plot the

number of true positive proteins present for each method, averaged

over 20 query samplings (a). On average, the context-sensitive approach

recovers more held-out true positive proteins at better precision than

the global approach. Specific examples of predicted networks from the

context-sensitive and global approaches are pictured in (b) and (c)

respectively (sampled from the recovery curve at the point indicated

in a). Query proteins are colored gray, true positives are white and false

positives are red. For this particular query, the context-sensitive

approach makes 24 of 30 correct predictions (80% precision) while

the global approach only makes 8 of 30 correct predictions (27%

precision).
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(and perhaps more biologically relevant) question is, does such

an approach help us learn new biology with greater precision?

While the true answer to this question requires experimental

confirmation of novel predictions, we can derive some hints

from our network recovery evaluation.
To compare the ability of the context-sensitive and global

approaches to confidently associate previously uncharacterized

proteins in S.cerevisiae with portions of characterized networks,

we performed a similar cross-validation experiment to that

described previously. More specifically, on the proteins held out

in each cross-validation fold, query sets were randomly sampled

from each GO term, and we used both methods to recover the

remaining network. For each protein added to the network,

we estimated the precision of that particular prediction based

on known, held-out proteins for the corresponding cross-

validation fold. Precision estimates were smoothed across each

ranked list (order in which proteins were recovered for each

network), and an uncharacterized gene appearing in any

prediction was assigned the corresponding precision.

Uncharacterized genes were assumed to be genes annotated

to the ‘biological process unknown’ GO term (GO:0000004) as

of 1 May 2006 (Saccharomyces Genome Database, 2006).

Figure 7 illustrates the results of this analysis for the two

methods by plotting the measured precision (relative to
random) versus the number of uncharacterized proteins
assigned with at least that precision.

The context-sensitive network prediction approach is
generally able to make more network predictions at higher
confidence. For instance, at 10 times the precision expected by

chance, the global scheme is able to predict networks for 118
previously uncharacterized proteins while the context-sensitive
approach makes predictions for 214 uncharacterized proteins
(81% improvement). Interestingly, the difference between the

two approaches is smaller for very high-precision predictions
(e.g.420 fold over random), suggesting there a limited number
of uncharacterized proteins whose participation in certain

networks is relatively easy to detect and varies little between the
two methods. As we relax the precision criteria, however, the
context-sensitive approach shows a clear and consistent

improvement in precisely predicting uncharacterized genes in
networks recovered from known sets of related proteins.
In summary, incorporating contextual information in the

data integration and prediction process can significantly
improve prediction quality and provide important information
about relevance of individual datasets in different contexts.

As noted above, there are a very limited number of cases
where the context-sensitive approach results in a loss
of performance. This is typically due to the size of the GO

terms corresponding to these contexts, and for such cases,
global (non-context-sensitive) integration should be used
(see Supplementary Material for a detailed analysis).

Incorporating context into the Bayesian integration phase
requires context-specific examples, which can be very few in
number for smaller contexts (GO terms). Interestingly, this

suggests a trade-off between the number of examples and the
specificity of examples, which hints at why contextual
information for network prediction is important. Put simply,

the more specific we can be about the learning task, the better
performance we can expect. This only holds true, however, if we
can maintain a statistically representative example set, which

requires a minimum number of examples. In general, this
problem seems to affect a small minority of contexts evaluated
here, and can be avoided by defining contexts more broadly.

We should emphasize that although we have implemented
our approach using a Bayesian integration scheme and a
particular search algorithm, the overall message of using

contextual information is general and could be used to improve
a variety of approaches to network prediction. We expect
this concept to be particularly true as we begin to develop

methods for integration and prediction in higher organisms,
where there is not only variation in dataset relevance
across biological process, but also across other aspects

such as tissues or stages of development. An important
consideration, however, is that to take advantage of this
information, methods must be formulated in such a way that

cross-context variation can actually by incorporated into the
process. For instance, in our discussion here, we have assumed
a query-based scheme, which inherently provides a straightfor-

ward approach to inferring the context of the prediction.
Methods like this that allow expert direction are particularly
well suited to leveraging contextual information to improve

prediction.

Fig. 5. Network recovery evaluation summary. We compared the

ability of the context-sensitive and global approaches to recover known

networks of proteins using cross-validation experiments. Specifically,

we started with a set of GO terms covering a wide range of biological

processes (Myers et al., 2006), and measured each method’s ability to

recover held-out member proteins given 10-protein queries from the

same process. As proteins were added to each process-specific network,

we measured the number of true positives recovered. Figure 5 compares

the number of true positives recovered for the two different methods for

networks of 40 proteins on 101 different biological processes. The

context-sensitive approach improves recovery by more than 2 SD

(estimated from query samplings) for 51% of the terms evaluated and

only causes deterioration by more than 2 SD on 8% of the terms. This

improvement is consistent across network sizes (see Supplementary

Table 1 for a complete comparison).
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In conclusion, we have demonstrated evidence for context-

dependent dataset reliability and illustrated a Bayesian
integration and network recovery approach that makes use of

this variation. Our approach achieves significant improvement

in terms of both precision and sensitivity over a broad range of

biological processes, and we have shown that it improves the
estimated precision on predicted networks for previously

uncharacterized genes. Furthermore, this approach provides

information about the relevance of different data sources to
specific biological processes. Biological context is an important

consideration for any network prediction approach, and can be

an effective means for managing data heterogeneity, particu-

larly as we move toward developing computational methods for
understanding networks in more complex organisms.
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