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ABSTRACT

In recent years, the deluge of complicated molecular and cellular
microscopic images creates compelling challenges for the image
computing community. There has been an increasing focus on
developing novel image processing, data mining, database and
visualization techniques to extract, compare, search and manage
the biological knowledge in these data-intensive problems. This
emerging new area of bioinformatics can be called ‘bioimage
informatics’. This article reviews the advances of this field
from several aspects, including applications, key techniques,
available tools and resources. Application examples such as high-
throughput/high-content phenotyping and atlas building for model
organisms demonstrate the importance of bioimage informatics.
The essential techniques to the success of these applications,
such as bioimage feature identification, segmentation and tracking,
registration, annotation, mining, image data management and
visualization, are further summarized, along with a brief overview of
the available bioimage databases, analysis tools and other resources.
Contact: pengh@janelia.hhmi.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In the last several decades, numerous biomedical imaging techniques
were developed, ranging from the whole organism level (millimeter
resolution) down to the single molecule level (nanometer resolution)
(Murphy, 2001; Tsien, 2003). Some of the most widely used
biological imaging methods include confocal or two-photon
laser scanning microscopy (LSM) (Pawley, 2006), scanning or
transmission electron microscopy (EM) (Bozzola and Russell,
1999), etc. Novel imaging techniques such as PALM (Betzig et al.,
2006), STORM (Rust et al., 2006), STED (Hell, 2003) that far
surpass the resolution of conventional optical microscopes currently
can pinpoint the location of individual proteins that are only several
nanometers apart. Along with the dramatic advances of many related
techniques such as image signal digitization and storage, biological
tissue labeling [e.g. green fluorescent proteins (GFP) and enhanced
GFP (EGFP) (Heim et al., 1995; Shimomura et al., 1962), Dronpa
(Ando et al., 2004), Brainbow combinatorial labeling (Livet et al.,
2007)], the number of biological images (e.g. cellular and molecular
images, as well as medical images) acquired in digital forms is
growing rapidly. Large bioimage databases such as Allen Brain Atlas
(Lein et al., 2007) and the Cell Centered Database (CCDB; Martone
et al., 2002) are becoming available. These image data could involve
(1) two-dimensional (2D) or 3D spatial information, (2) multiple

colors which may correspond to various molecular reporters, (3) 4D
spatio-temporal information for developing tissues or moving cells,
(4) various co-localized biological signals such as mRNA expression
levels of different genes (Lein et al., 2007; Long et al., 2007b;
Peng et al., 2007) or (5) other screening experiments related to
RNA interference (RNAi), chemical compounds, etc. (Echeverri and
Perrimon, 2006; Moffat et al., 2006; Sepp et al., 2008). Analyzing
these images is critical for biologists to seek answers to many
biological problems, such as differentiating cancer cell phenotypes
(Long et al., 2007a), categorization of neurons (Jefferis et al.,
2007), etc.

The deluge of complicated biological and biomedical images
poses significant challenges for the image computing community. As
a natural extension of the existing biomedical image analysis field,
an emerging new engineering area is to develop and use various
image data analysis and informatics techniques to extract, compare,
search and manage the biological knowledge of the respective
images. This new field can be called bioimage informatics. However,
due to the great complexity and information content in bioimages,
such as the very high density of cells (e.g. astrocytes, microglia,
neurons) intertwined together (Fig. 1A), or very rapid microtubule
growing process in a 4D movie of live cells, it is very challenging
to directly apply existing medical image analysis methods to these
bioimage informatics problems. Special techniques such as those
developed in the FARSIGHT project (Roysam, 2008) will be
necessary to analyze these complicated image objects (Fig. 1B).
In addition, usually a single biological image stack has a large
size (several hundreds of megabytes or even several gigabytes) and
several color channels. The objects of interest in such an image, for
instance the 3D structures of neurons, could have dramatic variations
of morphology and intensity variations from image to image. It is yet
not uncommon that thousands of images need to be automatically
analyzed in a high-throughput way, in terms of the number of hours
or days, but not months or years of manual work.All these difficulties
make it necessary to develop novel bioimage informatics algorithms
and systems, especially from three aspects: image processing and
mining, image database and visualization.

Many studies of bioimage informatics are either underway or have
been done over the last few years. Several very successful workshops
(e.g. bioimageinformatics.org) were organized to discuss the latest
developments of this field. The goal of this essay is to briefly review
the advance of bioimage informatics from the angles of applications,
key techniques, available tools and resources. First, in Section
2 several application studies on the high-through biology, model
organisms, etc., are introduced. Further, in Section 3 the desired
computational techniques, including bioimage feature identification,
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Fig. 1. (A) Maximum projection of a 5-channel confocal 3D image of a
100 µm thick section of rat hippocampus. Red: GFAP-labeled astrocytes;
green: EBA-labeled blood vessels; yellow: Iba1-labeled microglia; cyan:
CyQuant-labeled cell nuclei; purple: NeuroTrace-labeled Nissl substance;
scale bar = 50 µm. (B) 3D rendering (with a similar color scheme) of the
segmented and classified cells produced using the FARSIGHT techniques
for (A). Image courtesy of Badrinath Roysam (Bjornsson et al., 2008)

segmentation, registration, annotation, mining, indexing, retrieval
and visualization, are discussed. In Sections 4 and 5 the available
tools and resources are summarized. While in this short article, it
is difficult to include all the important work, and to explain the
details of the discussed applications and computing methods (such
as their biological objectives, challenges and findings), I hope that
the presented facts and links can be helpful for both researchers in
this field and general audiences who may have interests in learning
the basic ideas of bioimage informatics.

2 APPLICATIONS
Just like many other engineering fields, bioimage informatics is
application-driven, as one can see from the following non-exclusive
instances.

2.1 High-throughput and high-content analysis of
cellular phenotypes

Large-scale screening of cellular phenotypes, at whole-cell or
sub-cellular levels, is of importance for determination of gene
functions, delineating cellular pathways, drug discovery and even
cancer diagnosis. The CellProfiler system (Carpenter et al., 2006;
Lamprecht et al., 2007) was developed to screen cellular images
rapidly and gather information such as number of cells, size and
other morphological features of cells, per-cell protein levels, cell
cycle distribution, etc. This system has been used to detect various
cell phenotypes, such as Drosophila Kc167 cells, whose images are
often textured and clumpy, and human HT29 cells, which are smooth
and elliptical. Intelligent human–computer interface and content-
based image retrieval relevance feedback were also used to enable
high-content screening of Drosophila (fruit fly) neurons (Hong,
2006; Lin et al., 2007). Analysis of the morphological signatures of
cells was used to study signaling pathways related to cell protrusion,
adhesion and tension (Bakal et al., 2007).

For high-resolution intracellular analysis, 3D protein location
patterns associated with a number of subcellular organelles and
components such as nucleus, nucleolus, mitochondria, cytoskeleton,
etc., can be described and classified using fluorescence image
features, such as Haralick textures features and Zernike moments
(Murphy et al., 2003). Spatial patterns may also be considered in
clustering analysis and used for prediction of breast cancers (Long
et al., 2007a). More systematic descriptions, such as generative
models for subcellular locations of proteins, can provide information
for systems biology study (Zhao and Murphy, 2007).

2.2 Atlas building for model organisms
Bioimage informatics methods were used to study widely used
model organisms, such as mouse (Dorr et al., 2008; Lein et al.,
2007; Ng et al., 2007), fruit fly (Luengo Hendriks et al., 2006,
Peng and Myers, 2004; H. Peng et al., unpublished data),
Caenorhabditiselegans (Liu et al., 2008; Long et al., 2007b),
zebrafish (Megason et al., 2007), etc. One very important aspect
is to build various digital atlases of these organisms, and further
integrate the respective anatomical and ontological knowledge into
databases.

Allen Brain Atlas (Lein et al., 2007) integrates the genome-wide
RNA in situ hybridization (ISH) gene expression information of
20 000 mouse genes. Besides a manually generated reference atlas,
the Anatomic Gene Expression Atlas (AGEA) is an interactive
3D atlas of the adult mouse brain based on ISH gene expression
images. AGEA is based on approximately 4000 coronal gene sets,
which allows anatomic specification and browsing based on 3D
spatial coordinates and expression threshold control. With the pixel
resolution at ∼25 µm, Allen Brain Atlas provides very useful
information for studies close to the cellular level.

Single-cell analysis for an entire animal is useful for
understanding the cell functions, such as the neuronal circuit
mapping based on 3D cellular images of a brain. This task is possible
if the cells have unique identities, indicated by the stereotypy of
their 3D locations, 3D morphology, birth orders (lineages), gene
expression patterns or other functional properties. Several systems
do have these distinct properties. In C.elegans, each cell has a
unique lineage and identity. A recent development is the building
of the single-cell atlas for the L1 stage of C.elegans (Long et al.,
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2007b). It is based on a series of bioimage-processing and mining
techniques including C.elegans worm body straightening (Peng
et al., 2008a), nuclei segmentation (Long et al., 2007c), annotation
and cell identification (Long et al., 2008; Peng et al., 2008b) and atlas
modeling. With this atlas, systematic and high-throughput analysis
of gene expression at the truly single-cell level, instead of clusters
of cells, becomes feasible (Liu et al., 2008). Several other pieces
of similar work are underway for different systems, e.g. a fruit fly
adult brain (H. Peng et al, unpublished data).

2.3 Understanding the dynamic processes in cells and
living organisms

For intracellular processes, the microtubule, one class of
the cytoskeleton polymers that is constantly assembled and
disassembled, receives much attention in studies of various cell
functions, e.g. cell division. By imaging GFP fused to the distal
ends of microtubules, it is possible to analyze the different dynamic
patterns of microtubules, such as the velocity and acceleration, for
mutants or under other conditions. Computationally, the microtubule
growing, shortening and other dynamic patterns can be tracked
in time-lapse microscopy images, via mixture analysis of hidden
Markov models (Altinok et al., 2006; Altınok et al., 2007),
minimum shared decomposition of directed graphs derived from
the microtubule spots (Swidan et al., 2007), particle filtering (Smal
et al., 2008), multiscale tip and body model (Jiang et al., 2005),
detecting individual segments and linking (Danuser et al., 2000;
Hadjidemetriou et al., 2004; Meijering et al., 2006). Hierarchical,
agglomerative clustering analysis of various yeast mutants based
on kinetochore microtubule dynamics was also reported (Jaqaman
et al., 2007).

For developmental biology, visualizing how genes are expressed
in living organisms allows us to gain insight in the interactions of
gene products. For developing zebrafish embryos, in toto imaging
based on time-lapse, LSM were used to track cells in the four
dimensions of space and time (Megason et al., 2008). Image analysis
methods were developed to read out quantitative, cell-based protein
expression patterns and transcriptional expression patterns in vivo.
The in toto imaging analysis approach is suitable for studying animal
development from a systems biology perspective. For cases where
it is difficult to directly observe how 3D spatial patterns of gene
expression change over time, manifold learning can be used to
computationally reconstruct the 4D spatio-temporal developmental
dynamics of these patterns. For developing fruit fly embryos, spatial
registration and comparison of 3D gene expression patterns were
developed and conjugated with an approximation algorithm of
the Traveling Salesman problem, to reconstruct the developing
dynamics of genes such as ftz and snail (Peng et al., 2005a).

2.4 Reconstruction of 3D neuronal structures and
the wiring diagram of a brain

For neuroscience, there have been a lot of efforts on tracing
and reconstruction of 3D structures of neurons, based on optical
and electron microcopy images. Neurolucida (Glaser and Glaser,
1990), a pioneering software package in this sort, permits users
to digitally trace neuronal structures in images. Many automated
approaches were developed recently. Directional kernels were
used to exploratorily search neuronal topology in confocal images
(Al-Kofahi et al., 2002, 2003). A repulsive force-based snake

model was proposed to segment axons in 2D images and then
track them in 3D confocal images of transgenic mice that express
fluorescent protein (Cai et al., 2006). A graph cut method was used
to segment neuronal structures in electron micrographs (Vu and
Manjunath, 2008). The convolutional neural network was used
to reconstruct the nanometer scale image objects from scanning
electron microscopy (SEM) images (Jain et al., 2007). Several
automated 3D reconstruction software packages for optical and EM
images were also built (e.g. Maack et al., 2007; Y. Mishchenko,
personal communication). The FARSIGHT project (Fig. 1), which
targets integrating the automated 3D segmentation and tracing
algorithms for astrocytes, microglia, neurons, etc., uses a systematic
divide and conquer strategy for associative bioimage analysis
(Bjornsson et al., 2008; Roysam et al., 2008). Thousands of
reconstructed neurons have also been organized into publicly
available databases, such as NeuroMorpho.org (Ascoli, 2006).Along
with a number of on-going projects on categorizing the types
of neuronal structures, or mapping the neuronal circuits, these
resources will provide very valuable information to understand and
manipulate neuronal circuits.

One of the most exciting challenges in science is to understand
how a brain works. The reverse-engineering approach to tackle this
problem needs to reconstruct either the anatomical wiring diagram
of the brain of an animal (e.g. a fruit fly’s brain with 100 000
or so neurons), or the functional wiring diagram of this brain, or
both. The aforementioned 3D neuron tracing techniques, as well as
image segmentation and neuron classification methods are needed
to identify neurons and study their wirings based on electron, optical
or functional imaging (e.g. Ca2+) data.

2.5 Joint analysis using both bioimage informatics
and other bioinformatics methods

Bioimage informatics techniques can also be paired with conven-
tional bioinformatics methods. For example, clustering embryonic
gene expression patterns of fruit fly can be conjugated with com-
parative genomics approach to predict sequence motifs that may
have regulatory functions (Fig. 2) (Peng et al., 2007).

Besides the above examples, several bioimage informatics
applications (e.g. functional genomics) have also been discussed
in recent articles such as Megason and Fraser (2007) and Meijering
et al. (2006).

3 CRITICAL TECHNIQUES
In order to cope with the complexity in bioimage data, a number
of image analyses, machine learning and data mining techniques
are needed. Data management and visualization techniques are also
required in most bioimage informatics applications. Notably, some
particular problems, such as tracking of fibrous microtubule or
neuronal structures, may be tackled using different methods, e.g.
segmentation versus classification. Therefore, I only review the basic
categories of key techniques, but explain very briefly or ignore those
more complicated combinations of these basic categories, such as
various techniques for modeling. Due to the length limitation, I will
also have to skip the signal-processing techniques for biomedical
images, such as attenuation correction, deconvolution (Heintzmann,
2007), mixture model estimation, etc., as well as techniques that
may be used for general scientific computing but not limited
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Fig. 2. Clustering analysis of embryonic in situ mRNA gene expression
patterns of fruit fly genes and its utility in assisting prediction of the
regulatory sequence motifs. Based on clustering the eigen-embryo profiles
(purple–cyan plot) of representative gene expression patterns, four genes
in SQ are detected to be co-expressed genes. This prediction is consistent
with their known gene regulation relationship for fly mesoderm patterning.
Further, SQ can be used to predict sequence motifs. The motif example
shown is detected using the entire upstream regions of the homologous
genes in eight fly species D.melanogaster, D.simulans, D.yakuba, D.erecta,
and D.ananassae, D.pseudoobscura, D.virilis, and D.mojavensis, along
with three randomly selected example genes in the subsequent genome-
wide motif scanning results. BDGP (fruitfly.org) ISH images (in blue) and
annotations are also shown, without image cropping or orientation correction.
Short terms of annotations: AAISN, amnioserosa anlage in statu nascendi;
AISN, anlage in statu nascendi; AEA, anterior endoderm anlage; AEAISN,
anterior endoderm anlage in statu nascendi; CB, cellular blastoderm; DEA,
dorsal ectoderm anlage; DEAISN, dorsal ectoderm anlage in statu nascendi;
EAISN, endoderm anlage in statu nascendi; FA, foregut anlage; FAISN,
foregut anlage in statu nascendi; HMA, head mesoderm anlage; HA, hindgut
anlage; MAISN, mesoderm anlage in statu nascendi; PTEA, posterior
endoderm anlage; S, subset; TMA, trunk mesoderm anlage; TMAISN, trunk
mesoderm anlage in statu nascendi; VEA, ventral ectoderm anlage; VNA,
ventral neuroderm anlage. Original image source: (Peng et al., 2007)

to bioimage informatics, such as supercomputing with particular
computer architecture (Rao et al., 2007).

3.1 Feature extraction and selection
Image features are the fundamental description of pixels/voxels and
all higher level objects. Useful image features can correspond to
statistical, geometrical, morphological properties and frequency of

image pixels and regions, as well as the topological relationship
of multiple image objects. Almost all bioimage-related studies rely
on recognizing certain image features. For instance, points, edges,
curves, corners, ridges, textures have been considered in analyzing
(e.g. tracking) dynamic fluorescence images (Dorn et al., 2008).

One way to extract features is based on domain knowledge,
as seen in the analyses of fruit fly embryogenesis in situ mRNA
gene expression patterns. Local features based on Gaussian mixture
model decomposition can be utilized to describe and compare gene
expression patterns (Peng and Myers, 2004). Global decomposition
based on eigen-embryo analysis can be used for clustering these
patterns (Peng et al., 2006). Wavelet features that capture both
global and local frequency properties of these patterns can be used to
recognize these gene expression patterns and thus enable automatic
annotation (Peng et al., 2007; Zhou and Peng, 2007). Other useful
features, such as those obtained via independent component analysis
(Pan et al., 2006) and invariant moments (Gurunathan et al., 2004),
were also proposed. Another way for effective features extraction
is to consider as many image transformations as possible, and thus
generate a rich set of image features. For instance, Murphy et al.
(2003) considered many features such as texture and moments
to characterize the 3D protein location patterns associated with
major subcellular organelles and structures. The WND-CHARM
system (Orlov et al., 2008) of multipurpose bioimage classification
uses compound image features. Five types of features, including
pixel statistics, textures, polynomial decompositions, high contrast
features (e.g. object number, spatial distribution, size, shape, etc.),
and standard image transforms (Fourier, wavelet, Chebyshev) were
produced. These features together were used to classify image
patterns. One problem with the rich feature set is that it may
contain redundant features, which will degrade the performance of
classifiers. The minimum-redundant maximum-relevant (mRMR)
feature selection algorithm (Ding and Peng, 2005; Peng et al.,
2005b) has been used to determine an optimal set of least redundant
features, yielding significantly improved recognition accuracy of
gene expression patterns (Zhou and Peng, 2007).

3.2 Segmentation
Image segmentation is one of the most basic processing steps in
many bioimage informatics applications. While the goal is simply
to segment out the meaningful objects of interest in the respective
image, this task is non-trivial in many cases. Very complicated cases
also exist due to problems such as a low signal–noise ratio and a big
variability of image objects. Remarkably, bioimage segmentation
strongly depends on the features used. For example, for chromatin
composition, texture features can be used, whereas for nuclear
morphology, the concavity features may be considered.

Practically speaking it seems intuitive to categorize image
segmentation methods for molecular and cellular images based on
the overall shape of an image object. One class of segmentation
problems is to segment globular objects such as nuclei/cells in
2D or 3D images of cell-based assay, where nuclear compartment
may be fluorescently labeled for localization of molecules. Several
widely used methods, e.g. globular-template-based segmentation,
watershed segmentation, Gaussian mixture model estimation and
active contour/snake methods, which can be further improved
by considering different shape or intensity cues of the objects
(Cong and Parvin, 1999; Han et al., 2007; Lin et al., 2003, 2005;
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Long et al., 2007c; Parvin et al., 2002). Gradient information will
also provide useful cues in some cases (Li et al., 2007). Model-
based merging was considered to reduce the over-segmentation (Lin
et al., 2005; Long et al., 2007c). Note that sometimes the globular
object segmentation could be very tricky, due to the irregular
stains of the objects. For example, for a DAPI-stained nucleus,
its nucleolus (or nucleoli) may not be stained. As a result, the
nucleus will appear to be hollow. This requires special processing
such as hole filling before applying the watershed (Long et al.,
2007c). Watershed segmentation has also been used for EM image
segmentation where the object morphology is irregular and very
complicated (Y. Mishchenko, personal communication).

Non-globular object segmentation is often more complicated.
One problem of interest is the tracing of neurons in optical
images. Some of the latest developments were discussed earlier
in Section 2.4. Generally, local search and fitting methods,
such as the directional kernels (Al-Kofahi et al., 2002, 2003)
have been found effective. Some of these techniques have been
commercialized in neuroanatomical analysis software such as
Neurolucida (http://www.mbfbioscience.com). Other available tools
include the ImageJ plugin NeuronJ (Meijering et al., 2004),
NeuriteTracer (Longair, 2008).

Image object tracking in fluorescent time-lapse images is another
well-studied topic that relies on image segmentation. Many pieces
of related work were discussed in Section 2.3.

3.3 Registration
Bioimage registration is essential in many applications that need
to compare multiple image subjects of different conditions.
Quantitative measurements and visualization of comparing patterns
in the registered images can be done directly in a ‘standard’ space.
Image registration was used in applications such as building the brain
atlases (Carson et al., 2005; Ng et al., 2007; Toga and Thompson,
2001), comparison of neuron morphology and gene expression
patterns in fruit fly (Ahammad et al., 2005; Jefferis et al., 2007; H.
Peng et al., unpublished data), cardiac imaging of Zebrafish embryos
(Liebling et al., 2005), standardization of C.elegans images (Peng
et al., 2008a). Figure 3 shows one example of the 3D registered
fruit fly nervous system, where different GAL4 neuronal patterns
highlighted in different colors are mapped into a ‘standard’ space
(H. Peng et al., unpublished data). Many of the 2D and 3D image
registration methods proposed for medical image analysis, such as
the mutual information registration (Volla and Wells, 1997), spline-
based elastic registration (Rohr et al., 2003), invariant moment
feature-based registration (Shen and Davatzikos, 2002), congealing
registration (Miller, 2006; Zollei et al., 2005), etc., can be extended
to align the molecular and cellular images. However, due to the
great complexity and variation of patterns, the big volume of images,
(e.g. 2048 × 2048 × 300 pixels), and a low signal–noise ratio, 3D
bioimage registration remains very challenging in general.

Image registration will also help to produce a panoramic scene of
the 2D or 3D images that correspond to tiles of tissues. This is often
called montaging or tiling. In serial EM, many physical sections
are generated for imaging. Each section may also be imaged as
many overlapping tiles. Hence, there are two alignment problems:
first, stitching all corresponding tiles into a complete single picture,
and second, aligning adjacent sections if they have different
orientations and deformations (e.g. stretch, shear, compression)

Fig. 3. Maximum projection of 3D registered and overlaid neuronal patterns
of multiple fruit fly central complexes (top) and thoracic ganglia (bottom),
each with a different GAL4 line (Peng et al., unpublished data). Red: a205;
Green: EB1; Cyan: NP2320; Yellow: NP6510; gray: NC82-labeled neuropil.
Raw confocal images were produced by Julie Simpson and Phuong Chung.

introduced during sample preparation stages such as sectioning and
fixation/dehydration/embedding. The first alignment problem can be
solved via maximizing the cross-correlation of overlapping regions
of neighboring tiles. The second alignment problem can be solved
via finding a global 2D affine transformation for adjacent sections,
followed by slight local non-linear deformation. Many previous
tutorials provide the details (Szeliski, 2006).

Sometimes registration needs to be considered in the domain
of extracted image objects, besides aforementioned pixel-domain
image alignment. For fruit fly blastoderm embryos, each nucleus
can be described using a point in the 3D space. Point cloud
registration method was used to generate a virtual fruit fly embryo
(Fowlkes et al., 2008). The fairly broad expression patterns of the
reference markers, such as the transcriptional factor evenskipped
which is expressed as seven stripes around an embryo, and the
non-trivial variation of the number of nuclei (in the ±10% range),
make it difficult to achieve the single nucleus accuracy for the
registered point clouds. For C.elegans and the embryonic central
nervous system of fruit fly, both the single-cell-level automatic cell
recognition technique (Long et al., 2008) and 3D annotation tool
WANO (Peng et al., 2008b) have been developed to determine the
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identities of cells/nuclei and produce digital point-cloud atlases at
single-cell/nucleus resolution.

3.4 Clustering, classification and annotation
Many applications such as phenotyping cells and determination
of subcellular locations of proteins require the pattern clustering
and classification techniques (Arif and Rajpoot, 2007; Chen et al.,
2006; Newberg and Murphy, 2008). Multiresolution classification
of HeLa cells was proposed (Chebira et al., 2007). Graph-partition-
based clustering, such as the minimum-spanning-tree-cut (Peng
et al., 2006), was used to group potentially in situ mRNA
expression patterns of co-regulated genes and thus to detect sequence
motifs (Peng et al., 2007). Pattern classification can also help
other processing and analysis tasks, for instance the watershed
segmentation and grouping of over-segmented objects (Lin et al.,
2005; Long et al., 2007c). Automatic determination of cell identities
(Long et al., 2008) is also developed, which uses both the absolute
3D location of cells and their relative location patterns to determine
the identities of cells. This technique is essential for both high-
throughput measuring gene expression level at the single-cell level
and manipulating single cells based on optogenetic methods. Cell
identity tracking can also be combined with temporal information,
as shown in the work to trace lineage of dividing embryonic cells
of C.elegans (Bao et al., 2006).

Annotation of bioimage objects converts the image content
information to concrete semantically meaningful information that
is usually texts and can be conveniently organized and searched.
This task is often accomplished manually, such as the anatomical
and ontological annotation of the gene expression patterns collected
for about 5000 fruit fly genes in BDGP database (www.fruitfly.org).
Automatic annotation of bioimage patterns has begun to be studied
(Peng et al., 2007; Zhou and Peng, 2007). Bioimage patterns could
correspond to many (e.g. 100 or more) anatomical and ontological
annotation terms. Thus this problem can be formulated as pattern
classification with hundreds of mutually non-exclusive classes,
which falls outside of the framework of conventional multiclass
classification that involves a much smaller number (e.g. 10) of
mutually exclusive classes. This challenging annotation problem can
be solved via parallel classifiers, each performing a bi-classification
to indicate if a specific target annotation term should be assigned to
the image pattern or not (Zhou and Peng, 2007).

3.5 Indexing and retrieval
Currently there are two ways to access the bioimage data in
databases. The prevailing method is to provide and organize the
text descriptors. These metadata are indexed and thus searchable.
They serve as the proxy to find the real image data. Existing
relational database indexing and searching techniques can be used.
Comparison of biological image patterns is often complicated due
to the lack of standards in nomenclature; therefore, it will be a big
advantage if annotations stored in a bioimage database are organized
based on the controlled/standard ontological vocabulary. The web-
based annotation system for fruit fly gene expression patterns
in BDGP (Tomancak et al., 2002) provides a set of controlled
ontological words used by the curator to assign to an image
displayed. Of note, techniques of biomedical ontology and semantic
web techniques (www.semanticweb.org) can be naturally blended

into bioimage databases. New ontology systems were introduced,
e.g. subcellular anatomy of the nervous system (Larson et al., 2007).

The second way is to enable content-based access of the image
data in term of raw and processed data. Comparing image patterns
requires aforementioned feature extraction, selection and data
clustering and classification methods. Various distance metrics, such
as Euclidean distances and the earth mover’s distance (EMD) (Peleg
et al., 1989), can be considered. Recent work (Ljosa et al., 2006)
shows that a multiresolution LB-index approach can be used to index
the EMD scores. Lower bounds were derived to compute EMD at
various resolutions. This approach led to faster similarity query than
conventional methods for a database of fluorescent confocal retina
images consisting of microglial cells and blood vessels. Query and
retrieval on the probability density functions, which may be modeled
by adaptive-piecewise-linear approximations, have been developed
(Ljosa and Singh, 2007).

3.6 Visualization
Bioimage visualization is a subfield of the general scientific data
visualization. The widely used techniques for both the original
and processed bioimages are volume, surface, flow visualization.
Tools for interactive processing and visualization of images for
protein surfaces, retinal optical coherence tomographic data and
gene expression images of early stage fruit fly embryogenesis
were recently developed (Staadt et al., 2007). Scalable volume
visualization was used to study cell lineage and gene expression of
developing C.elegans embryos (Cedilnik et al., 2007). On the other
hand, immersive visualization systems, where a user walks into the
data volume/model, may enable one to analyze the data like playing
a video game. A few systems, such as NCMIR’s ATLAS in silico
system that utilizes CalIT2’s 100-million-pixel autosterographic
display (West, 2007), the ImmersaDeskTM system (Ai et al., 2005),
etc., support such immersive visualization, which requires virtual
reality methods.

4 AVAILABLE TOOLS
Many tools have been developed for various aspects of the
above techniques as well as applications. Some popular tools are
summarized below.

4.1 Image formats and I/O
Microscope vendors use different file formats to store their raw
image data. In addition, users may add customary metadata/tags
to the raw or processed images. It is very useful to be
able to read, write and convert different file formats. ImageJ
(http://rsb.info.nih.gov/ij/, Abramoff et al., 2004), empowered by
a number of free codes/plugins contributed by volunteers, has the
ability to read and write a number of bioimage file formats, such as
the Bio-rad PIC file, Zeiss LSM file and others.

Embedding the reading/writing engines of different bioimage
formats in one’s own code is also desirable. One useful standalone
Java library for importing/exporting various bioimage data is Bio-
Formats (http://www.loci.wisc.edu/ome/formats.html). It can be
used in ImageJ, Matlab, etc. With the ability to parsing both
pixels and metadata for a large number of formats, it finds a
range of applications in the bioimage informatics. Sometimes these
images, such as the Zeiss LSM files, are variants of the TIFF
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images, therefore can be handled using the open-source libtiff library
(http://www.libtiff.org/).

4.2 Image analysis tools
ImageJ (http://rsb.info.nih.gov/ij/, Abramoff et al., 2004) is a Java-
based cross-platform tool for biomedical image processing and
measurement. A number of image analysis toolboxes such as
fluorophore tracking, filament detection, etc., were developed by
various groups (Unser, 2008). ImageJ is not only useful for daily
use to view and small-scale analysis of images, but can also be
deployed to run large-scale analysis in batch.

ITK (www.itk.org, Yoo et al., 2002) provides a number of image
segmentation and registration functions. In this category similar
tools include the Matlab image-processing toolbox and other third
party toolbox such as the DIPimage toolbox (www.diplib.org).

More and more sophisticated bioimage analysis tasks need tools
to perform heavy duty image tasks such as 3D registration of
animals’ brains, 3D automatic neuron tracing, etc. Several projects
are currently underway, such as V3D (H. Peng et al., unpublished
data), which tries to integrate a suite of convenient 3D image
segmentation, registration, standardization and visualization tools
to improve the efficiency of the workflow. Several labs have
begun to use the alpha test version of V3D to study the fruit
fly nervous systems at embryonic, larval and adult developmental
stages. ZFIQ (Zebrafish Image Quantitator) (Liu et al., 2008) is
another toolkit, which provides a set of image analysis tools for
quantitative, reproducible and accurate interpretation of zebrafish
imaging data. Cell-ID (Gordon et al., 2007), an open-source cell
finding and tracking package, was developed first for yeast cells,
can be used for other regularly shaped cells as well. Other useful
analysis packages include CellProfiler (Carpenter et al., 2006;
Lamprecht et al., 2007), STARRYNITE (Bao et al., 2006), Neuron
Image Quantitator (neuroniq.cbi-platform.net) and those listed at the
NCMIR site (http://ncmir.ucsd.edu/downloads/software).

4.3 Database and annotation tools
OME (Open Microscopy Environment) (openmicroscopy.org)
(Swedlow et al., 2003) is a microscopic image and metadata
management system. It is divided into several parts, the OME server,
which implements image-based analysis or cellular localization
and phenotypes, as well as an OME-XML schema language, and
OMERO, which is a suite of java-based tools for data storage,
management and annotation.

The UCSB Bisque system (http://dough.ece.ucsb.edu/bisquik/)
provides an integrated online environment for users to upload,
search, edit and annotate images. It also includes a few analysis
and visualization modules.

Several other systems can also build images database and manage
tens of thousands of images and associated metadata entries in a
scalable way; examples include XNAT (Extensible Neuroimaging
Archive Toolkit, www.xnat.org) (Marcus et al., 2007), Biotrue
CDMS (www.biotrue.net) and Axiope e-CAT (www.axiope.com).

Annotating segmented image objects in 3D is another interesting
topic. One tool available is WANO (Peng et al., 2008b,
http://research.janelia.org/peng/proj/wano/index.html), a QT-based
cross-platform 3D annotator, which provides a spreadsheet of all
segmented 3D-image objects linked to both the 3D view of the raw
image and that of the segmentation mask. WANO enables a user to

quickly add or edit the annotations such as cell names/properties in
images, as well as editing the segmentation results such as adding
or removing segmented objects. This tool has been used to build
digital atlases of C.elegans and fruit fly (Long et al., 2007b).

4.4 Visualization tools
For visualization of multidimensional multicolor images, such as
confocal image stacks, commercially available products include
Amira (Mercury), Volocity (Improvision), etc. Free visualization
tools include Voxx (www.nephrology.iupui.edu/imaging/voxx/),
Chimera (www.cgl.ucsf.edu/chimera/), Volume Rover (cvcweb.
ices.utexas.edu/software/), many ImageJ plugins, etc. Blender
(http://www.blender.org/) is often considered in rendering models.

For displaying and browsing large 2D/3D image set such as the
stitched EM sections, each of which could easily exceed the size
100 000 pixels by 100 000 pixels, some tools such as Zoomify
(http://www.zoomify.com/) and HDView (Microsoft) can be used
to build the atlas view of a big image, similar to the Google map.

To develop visualization systems, many studies have relied on
VTK (www.vtk.org), which provides multilanguage interfaces to
a rich set of visualization functions. For heavy-duty visualization
tasks such as large volume rendering, people may consider using
OpenGL or even GPU programming directly. For building of cross-
platform GUI, QT (http://trolltech.com/products/qt) and Java are
often considered.

5 OTHER RESOURCES

5.1 Bench test datasets
There are a number of bioimage databases available for various
model organisms, including for example: the Allen Brain Atlas
database (www.brain-map.org) with genome-wide in situ gene
expression patterns for the mouse brain; the interactive and
multiresolution database for scanned and annotated images
of serial sections of both primate and non-primate brains
(Brainmaps.org); the BDGP database (www.fruitfly.org) containing
in situ embryogenesis gene expression patterns of about 5000
fruit fly genes; the GFP expression pattern database for C.elegans
(gfpworm.org) and the ZFin FishNet (www.fishnet.org.au, Bryson-
Richardson, 2007) that is a 3D database of zebrafish development
from the early embryo to adult.

For different disciplines, there are also many established
databases, such as the 3D neuronal structure database Neuromorpho
(neuromorpho.org) (Ascoli, 2006), which arranges the neuronal
structures based on animal species, brain regions, neuron types,
research labs, etc., and also provides useful neuron structure
measuring, comparison and visualization tools. Similarly useful
databases include CCDB (ccdb.ucsd.edu), which provides a venue
for sharing and mining cellular and subcellular data derived
from light and electron microscopy, including correlated imaging.
CCDB provides the raw data, reconstructed and segmented data
for download and includes 2D images and animations. Another
interesting database is PSLID (pslid.cbi.cmu.edu), a database of
protein subcellular location images. This database collects 2D
through 5D fluorescence microscope images, annotations and
derived features in a relational schema. There are also efforts to
establish some general bench test datasets. Some authors have
contributed data for the OME bench test database currently with
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about 10 datasets (ome.grc.nia.nih.gov/iicbu2008/). The Biomedical
Informatics Research Network (BIRN, www.nbirn.net) is a multisite
collaboration to facilitate data sharing of different labs; biomedical
images and associated metadata of various animal models are
available for downloading.

5.2 Conferences, special issues and books
There is an increasing interest for research meetings in this new
area. The 2005 Bioimage Informatics meeting was held at Stanford
University (bioimageinformatics.org). The 2008 meeting at UC
Santa Barbara attracted about 150 frontier researchers in this
field. The upcoming conference in 2009 will be held at Janelia
Farm Research Campus, Howard Hughes Medical Institute. Many
other events include workshops on Microscopic Image Analysis
with Applications in Biology (miaab.org), several workshops
related to bioimage analysis in the annual IEEE ISBI conferences
(biomedicalimaging.org), NIST workshop on 2D/3D image content
representation, analysis and retrieval (www.nist.gov), etc.

There are several special issues of journals and books on
the topics of bioimage informatics, molecular and cellular image
analysis, etc. BMC Cell Biology published a special issue in 2007
(http://www.biomedcentral.com/1471-2121/8?issue=S1), including
nine papers covering new image analysis and mining algorithms,
data visualization, biological applications, enabling supercomputing
techniques, and computer vision and machine learning methods to
solve other biology problems. It also includes a short summary of the
bioimage informatics challenges (Auer et al., 2007), including the
demand for bioimage informatics techniques, the need of multiscale
imaging, collaboration and communication between biologists and
engineers, common bioimage informatics problems and bench test
datasets and modeling. Other special editions include for example
the IEEE Transactions on Image Processing 2005 special issue
on Molecular and Cellular Bioimaging (edited by Murphy, R,
Meijering, E. and Danuser, G.), etc. Artech Publishing House is
going to publish a book on the Microscopic Image Analysis for Life
Science Applications in 2008 (edited by Rittscher, J., Machiraju,
R. and Wong, S.).

6 DISCUSSIONS AND CONCLUSION
While in the earlier sections, the molecular and cellular images are
emphasized, many of the techniques can be used for other biological
image or video data. Characterizing the behaviors of living animals
in videos relies on a similar set of tracking techniques to phenotyping
and tracking microtubule activities. Recent developments include
tracking of C.elegans, fruit fly, mouse and fish (Armstrong, 2005;
Branson and Belongie, 2005; Fontaine et al., 2007, 2008; Fry et al.,
2003; Geng et al., 2004; R. Kerr, personal communication; Roussel
et al., 2007; Tsechpenakis et al., 2007). Other examples, include
the analysis of gel and microarray images (Angulo and Serra, 2003;
Jung and Cho, 2002; White et al., 2005; Young et al., 2004), etc.

Remarkably bioimage computing methods are also demanded
to improve the quality and throughput of novel digital imaging
techniques, e.g. the super-resolution PALM (Betzig et al., 2006)
and correlative microscopy (Grabenbauer et al., 2005; Robinson
et al., 2001). It is also possible to adaptively acquire fluorescence
microscopic images with consideration of image classification
accuracy (Merryman and Kovačević, 2005).

The ultimate evaluation standard of bioimage informatics is
how these computational techniques can be used to enhance our
understanding of the biological entities and ability to solve the
respective problems. With a number of new computing tools and
databases that are increasingly shared by different research labs,
this new engineering biology field will see a boom in the coming
years.
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