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AbsTRACT

This chapter covers the application of affective computing using a physiological approach to children 
with Autism Spectrum Disorders (ASD) during human-computer interaction (HCI) and human-robot 
interaction (HRI). Investigation into technology-assisted intervention for children with ASD has gained 
momentum in recent years. Clinicians involved in interventions must overcome the communication 
impairments generally exhibited by children with ASD by adeptly inferring the affective cues of the 
children to adjust the intervention accordingly. Similarly, an intelligent system, such as a computer or 
robot, must also be able to understand the affective needs of these children - an ability that the current 
technology-assisted ASD intervention systems lack - to achieve effective interaction that addresses the 
role of affective states in HCI, HRI, and intervention practice.
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INTRODUCTION

Autism is a neurodevelopmental disorder char-
acterized by core deficits in social interaction, 
social communication, and imagination (American 
Psychiatric Association, 2000). These character-
istics often vary significantly in combination and 
severity, within and across individuals, as well as 
over time. Research suggests prevalence rates of 
autism has increased in the last 2 decades from 1 
in 10000 to as high as approximately 1 in 110 for 
the broad autism spectrum (CDC, 2009). While, 
at present, there is no single universally accepted 
intervention, treatment, or known cure for Autism 
Spectrum Disorders (ASD) (NRC, 2001; Sherer 
and Schreibman, 2005); there is an increasing 
consensus that intensive behavioral and educa-
tional intervention programs can significantly 
improve long term outcomes for individuals and 
their families (Cohen et al., 2006; Rogers, 2000).

Affective cues are indicators, external or 
internal, of the manifestations of emotions and 
feelings experienced in a given environment. This 
research utilizes and merges recent technological 
advances in the areas of (i) robotics, (ii) virtual 
reality (VR), (iii) physiological signal processing, 
(iv) machine learning techniques, and (v) adap-
tive response technology in an attempt to create 
an intelligent system for understanding various 
physiological aspects of social communication 
in children with ASD. The individual, familial, 
and societal impact associated with the presumed 
core social impairments of children with ASD is 
enormous. Thus, there is a need to better under-
stand the underlying mechanisms and processes 
associated with these deficits as well as develop 
intelligent systems that can be used to create 
optimal intervention strategies.

In response to this need, a growing number of 
studies have been investigating the application 
of advanced interactive technologies to address 
core deficits related to autism, namely computer 
technology (Bernard-Opitz et al., 2001; Moore 
et al., 2000; Swettenham, 1996), virtual reality 

environments (Parsons et al., 2004; Strickland et 
al., 1996; Tartaro and Cassell, 2007), and robotic 
systems (Dautenhahn and Werry, 2004; Kozima et 
al., 2009; Michaud and Theberge-Turmel, 2002; 
Pioggia et al., 2005; Scassellati, 2005). Computer- 
and VR-based intervention may provide a simpli-
fied but exploratory interaction environment for 
children with ASD (Moore et al., 2000; Parsons 
et al., 2004; Strickland et al., 1996). Robots have 
been used to interact with children with ASD in 
common imitation tasks and can serve as social 
mediators to facilitate interaction with other chil-
dren and caregivers (Dautenhahn and Werry, 2004; 
Kozima et al., 2009). In the rest of the chapter, the 
term “computer” is used to imply both computer- 
and robot-assisted ASD interventions.

Even though there is increasing research in 
technology-assisted autism intervention, there is 
a paucity of published studies that specifically 
address how to automatically detect and respond 
to affective cues of children with ASD. Such 
ability could be critical given the importance of 
human affective information in HCI (Picard, 1997; 
Prendinger et al., 2005) and HRI (Fong et al., 
2003) and the significant impacts of the affective 
factors of children with ASD on the intervention 
practice (Ernsperger, 2003; Seip, 1996; Wieder and 
Greenspan, 2005). A computer that can detect the 
affective states of a child with ASD and interact 
with him/her based on such perception could 
have a wide range of potential impacts. Interest-
ing activities likely to retain the child’s attention 
could be chosen when a low level of engagement 
is detected. Complex social stimuli, sophisticated 
interactions, and unpredictable situations could be 
gradually, but automatically, introduced when the 
computer recognizes that the child is comfortable 
or not anxious at a certain level of interaction 
dynamics for a reasonably long period of time. 
A clinician could use the history of the child’s 
affective information to analyze the effects of 
the intervention approach. With the record of the 
activities and the consequent emotional changes 
in a child, a computer could learn individual 
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preferences and affective characteristics over 
time using machine-learning techniques and thus 
could alter the manner in which it responds to the 
needs of different children. This chapter presents 
the results of investigations which assess what 
effects there are on physiological response for 
children with ASD during performance-oriented 
and socially-oriented tasks. The ability to detect 
the physiological processes that are a part of im-
pairments in social communication may prove an 
important tool for understanding the physiologi-
cal mechanisms that underlie the presumed core 
impairments associated with ASD.

bACKGROUND

Physiology for Affect Recognition 
of Children with AsD

There are several modalities such as facial expres-
sion (Bartlett et al., 2003), vocal intonation (Lee 
and Narayanan, 2005), gestures and postures (Asha 
et al., 2005; Kleinsmith et al., 2005), and physiol-
ogy (Kulic and Croft, 2007; Mandryk et al., 2006; 
Nasoz et al., 2004; Rani et al., 2004) that can be 
utilized to evaluate the affective states of individu-
als interacting with computer. This work evaluates 
affective states based on physiological data for 
several reasons. Children with ASD often have 
communicative impairments (both nonverbal and 
verbal), particularly regarding expression of af-
fective states (American Psychiatric Association, 
2000; Green et al., 2002; Schultz, 2005). These 
vulnerabilities place limits on computerized affec-
tive modeling based on traditional conversational 
and observational methodologies. For example, 
video has been used to teach children with ASD 
to recognize facial expressions and emotions of 
others (Stokes, 2000), but no published studies 
were found that used visual recognition through 
video to autonomously determine the affective 
states of people with ASD. A facial recognition 
algorithm could be designed to detect certain ex-

pressions but would have to accommodate when 
expressions are abnormal (e.g., smiling under 
mild pain, etc.) or lack variability (Schultz, 2005). 
Physiological signals, however, are continuously 
available and are not necessarily directly impacted 
by these difficulties (Ben Shalom et al., 2006; 
Groden et al., 2005; Toichi and Kamio, 2003). 
As such, physiological modeling may represent 
a methodology for gathering rich data despite the 
potential communicative impairments of children 
with ASD. In addition, physiological data may 
offer an avenue for recognizing aspects of affect 
that may be less obvious for humans but more 
suitable for computers by using signal processing 
and pattern recognition tools. Furthermore, there 
is evidence that the transition from one affective 
state to another state is accompanied by dynamic 
shifts in indicators of Autonomic Nervous System 
activity (Bradley, 2000). More than one physi-
ological signal, judged as a favorable approach 
(Bethel et al., 2007), is examined in this research, 
and the set of signals consists of various cardio-
vascular, electrodermal, electromyographic, and 
skin temperature signals, all of which have been 
extensively investigated in psychophysiology 
literature (Bradley, 2000).

One of the prime challenges of this work is at-
taining reliable subjective reports. There have been 
reports that adolescents could be better sources of 
information than adults when it comes to measur-
ing some psychiatric symptoms (Cantwell et al., 
1997), but researchers are generally reluctant to 
trust the responses of adolescents on self-reports 
(Barkley, 1998). One should be especially wary 
of the dependability of self-reports from children 
with ASD, who may have deficits in processing 
(i.e., identifying and describing) their own emo-
tions (Hill et al., 2004). While there have been 
some criticisms on the use of subjective report 
(i.e., self-assessment or the reports collected from 
observers) and its effect on possibly forcing the 
determination of emotions, the subjective report 
is by and large regarded as an effective way to 
evaluate affective responses. Due to the unresolved 
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debate on the definition of emotion (e.g., objective 
entities or socially constructed labels), research-
ers in affective computing often face difficulties 
obtaining the ground truth to label the natural 
emotion data accordingly. As suggested by Cowie 
et al. (2001) and Pantic and Rothkrantz (2003), 
the immediate implication of such a controversy 
is that pragmatic choices (e.g., application and 
user-profiled choices) must be made to develop 
an automatic affect recognizer. As a result, subjec-
tive report is widely used for affective modeling 
and endowing a computer with the recognition 
abilities similar to those of the reporters (Picard, 
1997; Silva et al., 2006).

An important question when estimating human 
affective response is how to operationalize the 
affective state. Although much existing research 
on affective modeling categorizes physiological 
signal data into “basic emotions,” there is no 
consensus on a set of basic emotions among the 
researchers (Cowie et al., 2001). This fact implies 
that practical choices are required to select target 
affective states for a given application. Anxiety, 
engagement, and enjoyment/liking are chosen as 
the possible target affective states in our work. 
Anxiety is chosen for two primary reasons. First, 
anxiety plays an important role in various human-
machine interaction tasks that can be related to 
task performance (Brown et al., 1997). Second, 
anxiety frequently co-occurs with ASD and plays 
an important role in the behavior difficulties of 
children with autism (Gillott et al., 2001). Engage-
ment, meaning sustained attention to an activity 
or person (NRC, 2001), has been regarded as one 
of the key factors for children with ASD to make 
substantial gains in academic, communication, 
and social domains (Ruble and Robson, 2006). 
With playful activities during the intervention, 
the liking of the children (i.e., the enjoyment they 
experience when interacting with the computer) 
may create urges to explore and allow prolonged 
interaction for the children with ASD, who are 
susceptible to being withdrawn (Dautenhahn and 
Werry, 2004; Papert, 1993).

Literature in the human factors and psycho-
physiology fields provide a rich history in support 
of physiology methodologies for studying stress 
(Groden et al., 2005; Zhai et al., 2005), engagement 
(Pecchinenda and Smith, 1996), operator workload 
(Kramer et al., 1987), mental effort (Vicente et 
al., 1987), and other similar mental states based 
on physiological measures such as those derived 
from electromyogram (EMG), galvanic skin re-
sponse (GSR; i.e., skin conductance), heart rate 
variability (HRV), and blink rates. Meehan et al. 
(2005) reported that changes in physiological 
activity are evoked by different amounts of pres-
ence in stressful VR environments. Prendinger 
et al. (2005) demonstrated that the measurement 
of GSR and EMG can be used to discriminate a 
user’s instantaneous change in levels of anxiety 
due to sympathetic versus unconcerned reactions 
from a life-like virtual teacher. In general, it is 
expected that higher physiological activity levels 
can be associated with greater stress levels (Smith, 
1989). Therefore, developing intelligent systems 
for exploration of physiological signals and the 
target affective states of anxiety, engagement, 
and enjoyment/liking that may be associated with 
core social deficits for children with ASD is both 
scientifically valid and technologically feasible.

Technology in the Treatment of AsD

Interventions often focus on social communica-
tion, including social-problem solving and social 
skills training, so that participants can gain expe-
rience and exposure to various situations repre-
sentative of everyday living. The ultimate goal of 
such interventions is for some generalization of 
these skills to carry over into real-life situations. 
A growing number of studies have been explor-
ing the application of interactive technologies for 
future use in interventions to address the social 
deficits of children with ASD. Initial results in-
dicate that such technologies hold promise as a 
potential alternative intervention approach with 
broad accessibility. Various software packages 
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and VR environments have been developed and 
applied to address specific deficits associated 
with autism, e.g., understanding of false belief 
(Swettenham, 1996), attention (Trepagnier et al., 
2006), social problem-solving (Bernard-Opitz 
et al., 2001), and social conventions (Parsons et 
al., 2005). Research on applying robotics to ASD 
intervention has suggested that robots can allow 
simplified but embodied social interaction that is 
less intimidating or confusing for children with 
ASD (Robins et al., 2005). By employing HCI 
and HRI technologies, interactive intervention 
tools can partially automate the time-consuming, 
routine behavioral intervention sessions and may 
allow intensive intervention to be conducted at 
home (Dautenhahn and Werry, 2004). For the pur-
pose of employing an affect-sensitive intelligent 
system, computers or robots could be the mode 
of technology for assisted ASD interventions.

Dautenhahn and colleagues have explored 
how a robot can become a playmate that might 
serve a therapeutic role for children with autism 
in the Aurora project. Dautenhahn et al. (2003) 
emphasize the importance of robot adaptability 
in autism rehabilitation. Research showed that 
children with ASD are engaged more with an au-
tonomous robot in the “reactive” mode than with an 
inanimate toy or a robot showing rigid, repetitive, 
non-interactive behavior (Dautenhahn and Werry, 
2004). Michaud and Theberge-Turmel (2002) 
investigated the impact of robot design on the 
interactions with children with ASD and pointed 
out that systems need to be versatile enough to 
adapt to the varying needs of different children. 
Pioggia et al. (2005) developed an interactive life-
like facial display system for enhancing emotion 
recognition in people with ASD. Robotic tech-
nologies pose the advantage of furnishing robust 
systems that can support multimodal interaction 
and provide a repeatable, standardized stimulus 
while quantitatively recording and monitoring the 
performance progress of the children with ASD 
to facilitate autism intervention assessment and 
diagnosis (Scassellati, 2005).

There are numerous reasons why a VR-
based intervention system may be particularly 
relevant for children with ASD. The strength of 
VR technology for ASD intervention includes 
malleability, controllability, reduced sensory 
stimuli, individualized approach, safety, and a 
reduction of human interaction during initial 
skill training (Strickland, 1997). VR does not 
necessarily include direct human-to-human 
interaction, which may work well for an initial 
intervention to remove the difficulties common 
in ASD related to mere human interaction that is 
part of a typical intervention setting involving a 
child and a clinician (Chen and Bernard-Opitz, 
1993; Tartaro and Cassell, 2007). However, VR 
should not be considered an isolating agent, 
because dyadic communication accomplished 
between a child and a VR environment can lead 
into triadic communication including a clinician, 
caregiver, or peer and in due course potentially 
accomplish the intervention goals of developing 
social communication skills between the child 
with ASD and another person (Bernard-Opitz et 
al., 2001). Furthermore, the main sensory output of 
VR is auditory and visual, which may represent a 
reduction of information from a real-world setting 
but also represents a full description of a setting 
without need for imagined components (Sherman 
and Craig, 2003; Strickland, 1997). Individuals 
with ASD can improve their learning skills re-
lated to a situation if the proposed setting can be 
manifested in a physical or visual manner (Kerr 
and Durkin, 2004). Since VR mimics real environ-
ments in terms of imagery and contexts, it may 
allow for efficient generalization of skills from 
the VR environment to the real world (Cromby et 
al., 1996). However, since limited social insight 
and social cognition are vulnerabilities that are 
often part of the core deficits associated with 
ASD, individuals may lack the skills to envision 
abstract concepts or changes to situations on their 
own. Virtual environments can easily change 
the attributes of, add, or remove objects in ways 
that may not be possible in a real-world setting 
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but could be valuable to teach abstract concepts. 
Therefore, VR can offer the benefit of represent-
ing abstract concepts through visual means (e.g., 
thought bubbles with text descriptions of a virtual 
character’s thoughts) and seamlessly allows for 
changes to the environment (e.g., changing the 
color of a ball or making a table disappear) that 
may be difficult or even impossible to accomplish 
in a real-world setting (Sherman and Craig, 2003; 
Strickland, 1997). Furthermore, the highly variable 
nature autism in terms of individual symptoms 
means an individual approach is appropriate, and 
computers can accommodate individualized treat-
ment (Strickland, 1997). The highly versatile VR 
environment can illustrate scenarios which can be 
changed to accommodate various situations that 
may not be feasible in a given therapeutic setting 
because of space limitations, resource deficits, 
safety concerns, etc. (Parsons and Mitchell, 2002). 
Therefore, VR represents a medium well-suited 
for creating interactive intervention paradigms for 
skill training in the core areas of impairment for 
children with ASD (i.e., social interaction, social 
communication, and imagination). However, to 
date the capability of VR technology has not been 
fully explored to examine the factors that lead to 
difficulties in impairments such as social com-
munication, which could be critical in designing 
an efficient intervention plan.

Consensus statements from both the American 
Academy of Pediatrics (Myers et al., 2007) and the 
National Resource Council (NRC, 2001) under-
score that effective intervention for children with 
ASD includes: provision of intensive intervention, 
individual instruction tailored to the qualities of 
the child, promotion of a generalization of skills, 
and incorporation of a high degree of structure/
organization. Despite the urgent need and soci-
etal import of intensive treatment (Rutter, 2006), 
appropriate intervention resources for children 
with ASD and their families are often difficult 
to access and extremely costly when accessible 
(Jacobson et al., 1998; Sharpe and Baker, 2007; 

Tarkan, 2002). Therefore, an important direction 
for research on ASD is the identification and de-
velopment of intelligent systems that can make 
application of effective intensive treatment more 
readily accessible and cost effective (Parsons and 
Mitchell, 2002; Rogers, 2000). In addition, with 
trained professional resource limitations, there is 
potential for emerging technology to play a signifi-
cant role in providing more accessible intensive 
individualized intervention (Goodwin, 2008). 
VR has shown the capacity to ease the burden, 
both time and effort, of trained clinicians in an 
intervention process as well as the potential to 
allow untrained personnel (e.g., parents or peers) 
to aid a participant in the intervention (Standen 
and Brown, 2005), thereby offering the facility of 
providing cost and time effective and readily acces-
sible intervention. As such, the future creation of 
a VR-assisted affect-sensitive intelligent system, 
with a potential of individualized intervention, 
for autism intervention could meet all of the core 
components of effective intervention while at the 
same time increasing the ability of the intervention 
provider to systematically control and promote 
intervention related skills.

Affective cues are insights into the emotions 
and behaviors of children with ASD. The ability 
to utilize the power of these cues may permit a 
smooth, natural, and more productive interaction 
process (Gilleade et al., 2005; Kapoor et al., 2001; 
Picard, 1997; Prendinger et al., 2005), especially 
considering the core social and communicative 
vulnerabilities that limit individuals with ASD 
to accurately self-identify affective experiences 
(Hill et al., 2004). Common in autism interven-
tion, clinicians who work with children with ASD 
intensively monitor affective cues of the children 
in order to make appropriate decisions about 
adaptations to their intervention and reinforce-
ment strategies. For example, “likes and dislikes 
chart” is recommended to record the children’s 
preferred activities and/or sensory stimuli during 
interventions that could be used as reinforcers and/
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or “alternative behaviors” (Seip, 1996). Children 
with autism are particularly vulnerable to anxiety 
and intolerant of feelings of frustration, which 
requires a clinician to plan tasks at an appropri-
ate level of difficulty (Ernsperger, 2003). The 
engagement of children with ASD is the ground 
basis for the “floor-time therapy” to help them 
develop relationships and improve their social 
skills (Wieder and Greenspan, 2005). Given the 
importance of affective cues in ASD intervention 
practice (Ernsperger, 2003; Seip, 1996; Wieder and 
Greenspan, 2005), using affective information as 
a means of implicit and bidirectional communica-
tion may be critical for allowing a computer to 
respond to a child’s affective states. The design 
of affect-sensitive interaction, an area known as 
affective computing, is an increasingly important 
discipline within the HCI and HRI communities 
(Picard, 1997). However, to date little work has 
been done to explore this approach for technology-
assisted intervention of individuals with ASD. 
Furthermore, no existing technology specifically 
addresses how to autonomously detect and flexibly 
respond to affective cues of children with ASD 
within an intervention paradigm (Bernard-Opitz 
et al., 2001; Dautenhahn and Werry, 2004; Kozima 
et al., 2009; Michaud and Theberge-Turmel, 2002; 
Mitchell et al., 2007; Parsons et al., 2005; Pioggia 
et al., 2005; Scassellati. 2005; Strickland, 1997; 
Swettenham, 1996; Tartaro and Cassell, 2007; 
Trepagnier et al., 2006). The primary contribu-
tion of the research covered in this chapter is to 
address this deficiency. The research develops 
HCI technologies capable of eliciting affective 
changes in individuals with ASD. We investigate 
how to augment HRI to be used in affect-sensitive 
interaction by endowing the technology with the 
ability to recognize and flexibly respond to the 
affective states of a child with ASD based on his/
her physiological responses. The research also 
assesses the efficacy of measuring affect in VR.

COMPLETED REsEARCH 
ON AFFECT-sENsITIVE 
COMPUTING AND AUTIsM

We briefly present our results to demonstrate the 
feasibility as well as the likelihood of success of 
applying affect-sensitive computing to individu-
als with ASD.

Affective Modeling and 
Closed-Loop Affect-sensitive 
Interaction for Children with 
AsD During Non-social Tasks

In Phase I of this study (Liu et al., 2008a) six 
participants (ages 13-16) with ASD completed 
two computer-based tasks (i.e., Anagram game, 
Pong) wherein changes in task difficulty evoked 
varying intensities of three target operationalized 
affective states: liking, anxiety, and engagement. 
Affective modeling based on initial simultaneous 
clinical observation, performance characteristic/
evaluation, and physiological data produced 
affect-recognition capabilities with predictive 
accuracies averaging around 82.9% in future 
performance. In Phase II (Liu et al., 2008b), a 
robot-based basketball (RBB) task was designed 
wherein a robotic arm with a basketball hoop 
attached to its end-effector learned individual 
preferences based on the predicted liking level 
of children with ASD and selected an appropriate 
behavior in real-time. Each participant completed 
two sessions RBB1 (non-affect-sensitive) and 
RBB2 (affect-sensitive). The results showed 
that the three different behaviors of the robot 
had distinguishable impacts on the liking level 
of the children with ASD. To reduce the bias of 
validation, in RBB1 the robot selects behaviors 
randomly and the occurrence of each behavior is 
evenly distributed. Average labeled liking level 
for each behavior as reported by the therapist in 
RBB1 showed differences between behaviors 
and individual preferences of each child. The 
difference of the impact on liking of each robot 



332

Affect-Sensitive Computing and Autism

behavior was significant for five of the six chil-
dren and moderate for one child. By performing 
two-way ANOVA analysis on the behavior (i.e., 
most-preferred, moderately-preferred, and least-
preferred behavior) and participant, it was found 
that the differences of reported liking for different 
behaviors were statistically significant (p < 0.05), 
whereas no significant effect due to different 
participants was observed.

Furthermore, it was also observed that differ-
ent children with ASD may have different pref-
erences for the robot’s behaviors. These results 
demonstrated that it is important to have a robot 
learn the individual’s preference and adapt to it 
automatically, which may allow a more tailored 
and affect-sensitive interaction between children 
with ASD and the robot. When a robot learns that 
a certain behavior is liked more by a particular 
child, it can choose that behavior as his/her “social 
feedback” or “reinforcer” in a robot-assisted in-
dividualized affect-sensitive autism intervention.

In the closed-loop affect-sensitive session, 
RBB2, the robot autonomously selected the de-
sirable behavior based on interaction experiences 
(i.e., the consequent liking level of a participant 
predicted by the individual affective model de-
veloped in Phase I). To determine the effects of 
the session type and participant on the reported 
liking, a two-way ANOVA test was performed. 
The null hypothesis that there is no change in 
liking level between affect-sensitive sessions and 
non-affect-sensitive sessions could be rejected 
at the 99.5% confidence level. Additionally, no 
significant impact due to different participants 
was observed. This was an important result as 
the robot continued learning and utilizing the 
information regarding the probable liking level 
of children with ASD to adjust its behaviors. This 
ability enables the robot to adapt its behavior 
selection policy in real time and hence keeps the 
participant in a higher liking level. These results 
suggest that endowing an affect-sensitive adaptive 
system with the ability to recognize and respond 
to the affective states of a child with ASD based 

on physiological information could be a viable 
means for autism intervention.

Affective Reactions to Manipulation 
of social Parameters in VR

This study examined affective and physiologi-
cal variation in response to manipulated social 
parameters (e.g., eye gaze and social distance) 
during social interaction in VR for both children 
with ASD and typically developing (TD) children. 
Experiments have been completed for 7 pairs of 
children with ASD and TD (age 13-17 years) 
matched on age, gender, and reciprocal verbal 
ability. Social interactions were designed using 
VIZARD VR toolkit software to project virtual 
human characters (i.e., avatars) who displayed 
different eye gaze patterns and stood at different 
distances while telling personal stories to the par-
ticipants. We measured physiological responses 
and collected reports from an observing therapist 
on the levels of affective states (i.e., anxiety and 
engagement) for each participant who completed 
two 1.5-hour sessions. The social parameters of 
interest, eye gaze and social distance, were ex-
amined in a 4x2 design, presented in a random 
order based on a Latin Squares design to account 
for sequencing and order effects. Four types of 
eye gaze dictated the percentage of time an avatar 
looked at the participant. These were tagged as 
direct, averted, normal while speaking, and flip 
of normal (Argyle and Cook, 1976; Colburn et 
al., 2000). Two types of social distance, termed 
invasive (1.5ft away) and decorum (4.5ft away), 
characterized the distance between the avatar 
and the participant (Schneiderman and Ewens, 
1971). Figure 1 shows two examples of the 
avatars. Other social parameters, such as facial 
expression and vocal tone were kept as neutral as 
possible. Efforts were made to minimize reactions 
due solely to viewing an avatar by choosing the 
10 most-neutral avatars based on a survey of 20 
participants. Therefore, affective rating and physi-
ological reactions during the experiment could 
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be reasonably expected to be related to change 
in eye gaze and/or social distance and not due to 
viewing the avatar alone.

Analysis of the subjective rating by the thera-
pist revealed that manipulation of social param-
eters created affective changes in the participants 
(Table 1). The reported anxiety group mean was 
higher and the engagement group mean was 
lower for ASD than for the matched TD group, 
which is consistent with observations of social 
deficits of ASD children. The standard deviation 
(SD) for the ASD group was higher for both 
anxiety and engagement reports than that of the 
TD group. This result implied that the ASD group 
was more susceptible than the TD group to ma-
nipulation of social parameters in the VR trials. 
In addition, the range of subjective rating (9-point 
scale) was higher for the ASD group than the TD 
group on both affective states. Thus, the results 
implied that our VR-based social interaction 
system was capable of creating affective changes 
among the participants.

A set of 53 extracted physiological indices 
were analyzed to determine the extent of physi-

ological responses occurring during the VR-based 
social interaction. A detailed description of the 
sensor placement, signal processing, and routines 
used to extract the physiological indices from the 
raw signals can be found in our previous work 
(Liu et al., 2008a). Figure 2a.-d. shows a sample 
of results of physiological indices in response to 
effect of varying eye gaze with anxiety, and Fig-
ure 3a.-d.shows the same sample of physiological 
indices from effect of varying eye gaze with en-
gagement. The variation of social interaction 
within the VR trials generated statistically sig-
nificant physiological changes (³ 90% confidence) 
in each of four major physiological categories – 
cardiovascular (ECG), electrodermal (EDA), skin 
temperature (ST), and electromyographic (EMG) 
– corresponding to both reported low anxiety (LA) 
and high anxiety (HA) states as well as low en-
gagement (LE) and high engagement (HE) states. 
Thus, the physiological indices are a viable means 
to differentiate among the ASD and TD groups.

Figure 1. Snapshot of an avatar displaying straight gaze at the invasive distance (left) and an avatar 
standing at the decorum distance and looking to her right in an averted gaze (right)

Table 1. Affective Intensity (full range [1-9]) Reported by Therapist 

Anxiety Engagement

Group Mean SD Range Mean SD Range

ASD (N=7) 4.9 1.7 8 4.7 1.6 8

TD (N=7) 4.4 1.4 6 5.1 1.4 7
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FUTURE REsEARCH DIRECTIONs

To address the core deficits of children with ASD 
in social communication in complex interactions, 
effective dynamic adjustment mechanisms would 

be demanded to incorporate multiple factors of 
interests such as affective and behavioral (e.g., 
attentive) cues, intervention goals, and task 
measures. As discussed earlier, expert therapists 
attempt to adeptly infer the affective cues ex-

Figure 2. Shown are the changes from baseline in physiological indices corresponding to Low Anxiety 
(LA) and High Anxiety (HA) states for the ASD and TD groups in response to variation of the avatar’s 
eye gaze. Significant differences are evident between groups for physiological indices extracted from 
cardiovascular signals (a), electrodermal signals (b), skin temperature signals (c), and electomyographic 
signals (d)

Figure 3. Shown are the changes from baseline in physiological indices corresponding to Low Engage-
ment (LE) and High Engagement (HE) states for the ASD and TD groups in response to variation of 
the avatar’s eye gaze. Significant differences are evident between groups for physiological indices 
extracted from cardiovascular signals (a), electrodermal signals (b), skin temperature signals (c), and 
electomyographic signals (d)
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hibited by the children with ASD to adjust the 
intervention process (Ernsperger, 2003; Seip, 
1996; Wieder and Greenspan, 2005). Therefore, 
a technology-assisted ASD intervention system 
must also be able to understand and respond to 
the affective needs of these children - an ability 
that the current ASD intervention systems lack - to 
achieve effective interaction leading to efficient 
intervention.

The physiology-based affect-sensitive tech-
nology described here could be employed to 
develop new intervention paradigms, which could 
promote interventions for individuals with ASD 
that are practical, widely available, and specific 
to the unique strengths and vulnerabilities of 
individuals with ASD. With further integration, 
a VR and physiological profiling system could 
be effective for use in developing and adapting 
controlled environments that help individuals 
explore social interaction dynamics gradually 
but automatically (i.e., introducing the aspects of 
social communication that are more challenging 
based on physiological data). Future work may 
include a reduction of the verbal components in 
the cognitive tasks which would allow application 
to the broader ASD population. Also, the research 
could benefit from exploring and merging other 
types of signals and features proven useful in af-
fective computing, such as pupil diameter from 
eye-tracking data, with the current set of physi-
ological signals. These ideas are currently being 
explored by researchers in our laboratory.

Note that the presented work requires physi-
ological sensing that has its own limitations. For 
example, one needs to wear physiological sen-
sors, and use of such sensors could be restrictive 
under certain circumstances. However, none of 
the participants in our studies had any objection 
in wearing the physiological sensors. Similar ob-
servations were achieved by Conati et al. (2003) 
that suggested concerns for intrusiveness of physi-
ological sensors could be lessened for children in 
a game-like environment. Given the rapid progress 
in wearable computing with small, non-invasive 

sensors and wireless communication, physi-
ological sensors can be worn in a wireless man-
ner such as in physiological sensing clothing and 
accessories (Picard, 1997; Wijesiriwardana et al., 
2004), which could alleviate possible constraints 
on experimental design. Physiology-based affect 
recognition can be appropriate and useful for the 
application of interactive autism intervention and 
could be used conjunctively with other modalities 
(e.g., facial expression, vocal intonation, etc.) to 
allow flexible and robust affective modeling for 
children with ASD.

Future work may also involve designing 
socially-directed interaction experiments with 
embodied robots interacting with children with 
ASD. For example, the real-time affect recogni-
tion and response system described here could be 
integrated with a life-like android face developed 
by Hanson Robotics (hansonrobotics.com), which 
can produce accurate examples of common facial 
expressions that convey affective states. This 
affective information could be used as feedback 
for empathy exercises to help children with ASD 
recognize their own emotions.

CONCLUsION

There is increasing consensus that development 
of assistive therapeutic tools can make application 
of intensive intervention for children with ASD 
more readily accessible. In recent years, various 
applications of advanced interactive technologies 
have been investigated to facilitate and/or partially 
automate the existing behavioral intervention that 
addresses specific deficits associated with autism. 
However, the current technology-assisted thera-
peutic tools for children with ASD do not possess 
the ability of deciphering the affective cues of 
the children, which could be critical given that 
the affective factors of children with ASD have 
significant impacts on the intervention practice.

A physiology-based affective modeling frame-
work for children with ASD was presented. The 
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developed model could allow the recognition of 
affective states of the child with ASD from the 
physiological signals in real time and provide the 
basis for computer-based affect-sensitive interac-
tive autism intervention. How to augment the 
interactive autism intervention was investigated 
by having a robot respond appropriately to the 
inferred level of a target affective state based on 
the affective model. VR-based intervention tools 
that address the social communication deficits 
of children with ASD were also developed and 
evaluated.

The impact of an intelligent system built on a 
computer-, robot-, or VR-based platform that can 
detect the affective states of a child with ASD and 
interact with him/her based on such perception 
could be transformative. Such a system could 
feasibly allow the manipulation and exacerbation 
of salient characteristics of interactions in a highly 
flexible environment that could potentially scaf-
fold skills while minimizing potentially negative 
consequences. Thus, having a methodology that 
can objectively identify and predict social engage-
ment as well optimal levels of affective arousal 
in a manner targeted to the specific child would 
represent a powerful intervention platform that 
addresses a serious potent barrier to the treatment 
of children with ASD.

Ultimately, continued exploration of this 
research could demonstrate the utility of affect-
computing systems and physiologically-based 
affect recognition to address fundamental gaps 
in existing intervention paradigms designed to 
remediate clinically impairing social difficulties 
within an ASD population. Not only is the po-
tential application of this technology particularly 
promising to this population, but demonstration of 
such a tool may hold even greater import in future 
extension of this methodology to individuals with 
ASD and other developmental disabilities wherein 
intellectual disabilities and communication limits 
are even more challenging.
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