Circular Motion Dynamics

- Magnitude of acceleration of a uniform circulating body is

$$
\begin{equation*}
a=\frac{v^{2}}{R} \tag{63}
\end{equation*}
$$

- Its direction points towards the center of circle
- A force has to be applied to the object to create this acceleration.
- By Newton's second Law, the magnitude of this force:

$$
\begin{equation*}
|\vec{F}|=m \frac{v^{2}}{R} \tag{64}
\end{equation*}
$$

- This force has to be directed towards the center of circle

Conical Pendulum

- A mass is attached to a massless string. The mass makes uniform circular motion with speed v. Calculate v and the tension on the string

Conical Pendulum

- The forces acting on the mass:

$$
\begin{align*}
& \vec{W}=-m g \hat{z} \\
& \vec{F}_{t}=T \cos \theta \hat{z}-T \sin \theta \hat{x} \\
& \vec{F}_{T}=(T \cos \theta-m g) \hat{z}-T \sin \theta \hat{x} \\
& \equiv-m \frac{v^{2}}{R} \hat{x} \\
& \text { ECHANICS } \tag{68}
\end{align*}
$$

Conical Pendulum

$$
\vec{F}_{T}=(T \cos \theta-m g) \hat{z}-T \sin \theta \hat{x}
$$

(65)

$$
\equiv-m \frac{v^{2}}{R} \hat{x}=-m \frac{v^{2}}{L \sin \theta}
$$

$$
\Longrightarrow\left\{\begin{aligned}
T \cos \theta-m g & =0 \\
-T \sin \theta & =-m_{L \frac{v^{2}}{L \sin \theta}}
\end{aligned}\right.
$$

(67)

Conical Pendulum

$$
\begin{aligned}
T \cos \theta-m g & =0 \Longrightarrow T=\frac{m g}{\cos \theta} \\
T \sin \theta & =m \frac{v^{2}}{L \sin \theta} \\
& \Longrightarrow g L \sin \theta \tan \theta=v^{2}
\end{aligned}
$$

- Period of motion is $T=\frac{2 \pi R}{v}$
- Check the units and the limits $v \rightarrow 0$ and $v \rightarrow \infty$

Skidding on a Curve

- A car of mass m takes a curve whose radius of curvature is R. What is its maximum velocity such that it will not skid?

Skidding on a Curve

- Forces acting on a car:

$$
\begin{align*}
\vec{F}_{f r} & =\mu_{s} N \tag{68}\\
\vec{N} & =N \hat{y} \tag{69}\\
\vec{w} & =-m g \hat{y} \tag{70}\\
\vec{F}_{T} & =(N-m g) \hat{y}+\mu_{s} N \hat{x} \tag{71}
\end{align*}
$$

Skidding on a Curve

$$
F_{T}=(N-m g) \hat{y}+\mu_{s} N \hat{x} \equiv m \frac{v_{m a x}^{2}}{R} \hat{x}
$$

$$
N-m g=0
$$

$$
\mu_{s} N=m \frac{v_{\max }^{2}}{R}
$$

$$
\Longrightarrow v_{\max }=\sqrt{\mu_{s} R g}
$$

Banked Curves

- What should be the value of θ, such that a car moving at a speed v, can turn a curve with radius R without skidding? Ignore friction.

Banked Curves

- The forces acting on the car:

$$
\begin{align*}
& \vec{N}=N \sin \theta \hat{x}+N \cos \theta \hat{y} \tag{71}\\
& \vec{F}_{f r}=0 \tag{72}\\
& \vec{W}=-m g \hat{y} \tag{73}\\
& \vec{F}_{T}=N \sin \theta \hat{x}+(N \cos \theta-m g) \hat{y} \\
&=m \frac{v^{2}}{R} \hat{x} \tag{74}\\
& \\
& \text { ECHANICS }
\end{align*}
$$

Banked Curves

$$
\begin{aligned}
\vec{F}_{T} & =N \sin \theta \hat{x}+(N \cos \theta-m g) \hat{y} \\
& =m \frac{v^{2}}{R} \hat{x} \\
& \Longrightarrow\left\{\begin{aligned}
N \cos \theta-m g & =0 \\
N \sin \theta & =m \frac{v^{2}}{R}
\end{aligned}\right. \\
& \Longrightarrow g \tan \theta=\frac{v^{2}}{R}
\end{aligned}
$$

