- In liquids and gases, friction is not constant, but velocity dependent.
- For small velocities $\vec{F}_D = -b\vec{v}$
- Consider a mass *m* left from rest at some height. (1D motion)
- Newton's second law:

$$mg - bv = ma \equiv m \frac{dv}{dt}$$
 (71)
(72)

• • • • • • • • • • •

• If v = mg/b, a = 0. The terminal velocity is $v_t = mg/b$

Altuğ Özpineci (METU)

PHYS109 92 / 108

Fizik Rölümü

Department

Newton's second law:

$$mg - bv = ma \equiv m \frac{dv}{dt}$$
 (71)
(72)

- If v = mg/b, a = 0. The terminal velocity is $v_t = mg/b$
- For any other velocity

$$m\frac{dv}{mg-bv} = dt \tag{73}$$

< ロ > < 同 > < 回 > < 回 >

Altuğ Özpineci (METU)

PHYS109 92 / 108

Fizik Bölümü

Department

For any other velocity

$$m\frac{dv}{mg-bv} = dt \tag{71}$$

• Integration both sides from t_i to t (v_i to v(t))

$$\int_{t_i}^{t} dt = \int_{v_i}^{v(t)} \frac{dv}{mg - bv}$$
(72)
$$\implies (t - t_i) = \frac{m}{b} \log \frac{mg - bv_i}{mg - bv(t)}$$
(73)

Altuğ Özpineci (METU)

PHYS109 92 / 108

∃ ► < ∃</p>

• Integration both sides from t_i to t (v_i to v(t))

$$\int_{t_i}^t dt = \int_{v_i}^{v(t)} \frac{dv}{mg - bv}$$
(71)
$$\implies (t - t_i) = \frac{m}{b} \log \frac{mg - bv_i}{mg - bv(t)}$$
(72)

• Solving for v(t):

$$v(t) = v_t - e^{-\frac{b}{m}(t-t_i)}(v_t - v_i)$$
(73)
= $v_i e^{-\frac{b}{m}(t-t_i)} + v_t \left(1 - e^{-\frac{b}{m}(t-t_i)}\right)$ (74)
Department
Physics of Fizik
Boliumi

Altuğ Özpineci (METU)

PHYS109 92 / 108

Gravity and Planetary Motion

Kepler's Laws

Kepler's laws are based on observation only:

- The orbit of planets around the sun are ellipses with the Sun positioned at one of the centers
- The vector from the sun to the planet, sweeps equal areas at equal times
- 3 Let s_i and T_i , i = 1, 2 be the semi major axis and the period of rotation respectively, of two planets. Then

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{s_1}{s_2}\right)^3 \tag{75}$$

or

is the same for every planet.

Phys109-MECHANICS

PHYS109 93 / 108

Fizik Bölümü

Department

Kepler's Laws

Kepler's laws are based on observation only:

- The orbit of planets around the sun are ellipses with the Sun positioned at one of the centers
- The vector from the sun to the planet, sweeps equal areas at equal times
- Solution Let s_i and T_i , i = 1, 2 be the semi major axis and the period of rotation respectively, of two planets. Then

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{s_1}{s_2}\right)^3 \tag{6}$$

or

is the same for every planet.

PHYS109 93 / 108

Department of Physics

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Gravity and Planetary Motion

Kepler's Laws

Kepler's laws are based on observation only:

- The orbit of planets around the sun are ellipses with the Sun positioned at one of the centers
- The vector from the sun to the planet, sweeps equal areas at equal times
- Solution Let s_i and T_i , i = 1, 2 be the semi major axis and the period of rotation respectively, of two planets. Then

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{s_1}{s_2}\right)^3 \tag{75}$$

or

is the same for every planet.

Altuğ Özpineci (METU)

Phys109-MECHANICS

 $\frac{T^2}{s^3}$

PHYS109 93 / 108

Department

Physics

(76)

Bölümü

Kepler's First Law

- a (b) is the semi minor (major) axis
- Definition of an ellipse: $|F_1P_1| + |P_1F_2| = |F_1P_2| + |P_2F_2| \equiv 2b$

 t₁₂ (t₃₄) time it takes for the planet to go from P₁ (P₃) to P₂ (P₄)

• If
$$t_{12} = t_{34}$$
 then $A_1 = A_2$.

- The area covered in time interval δt is $\delta A = \frac{1}{2}r\delta s\sin(\pi \theta) = \frac{1}{2}rv\sin\theta\delta t$
- δA is the same independent of where the planet is on its orbit
- As the planet moves, $rv \sin \theta$ is constant.
- $rv\sin\theta = |\vec{r} \times \vec{v}|$ Altuğ Özpineci (METU) Phys109-MECHANICS PHYS109 96/108

- The area covered in time interval δt is $\delta A = \frac{1}{2}r\delta s\sin(\pi \theta) = \frac{1}{2}rv\sin\theta\delta t$
- δA is the same independent of where the planet is on its orbit
- As the planet moves, $rv \sin \theta$ is constant.

•
$$rv\sin\theta = |\vec{r} \times \vec{v}|$$

Fizik

Bölümi

Department

T²/s³ is constant
Consider a circular orbit s = R
T = 2πR/V
Kepler's Law:

$$\left(\frac{2\pi R}{v}\right)^{2} \left(\frac{1}{R^{3}}\right) = \frac{2\pi}{Rv^{2}} = \frac{2\pi}{R^{2}\frac{v^{2}}{R}} \Longrightarrow \frac{v^{2}}{R}R^{2} = constant$$
(77)
$$\implies |\vec{F}|R^{2} = constant$$
(78)

Kepler's second law implies that the central force decreases with the square of the distance

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 97 / 108

Fizik Bölümü

Department

Newton's Law of Gravitation

- Kepler's third Law \Longrightarrow $F \propto \frac{1}{r^2}$
- Law of uniform gravitational acceleration \Longrightarrow $F = mg \propto m$
- Symmetry of forces (action reaction pairs) \longrightarrow *F* \propto *m*_{*E*}

$$|\vec{F}| = G_N \frac{mm_E}{r^2} \tag{79}$$

• • • • • • • • • • •

Department of Physics

PHYS109

98 / 108

where m and m_E are the masses of two gravitating objects, r is the distance between their centres.

•
$$G_N = 6.67384 \times 10^{-11} N (m/kg)^2$$

Altuğ Özpineci (METU)

Newton's Law of Gravitation

• \vec{F}_{12} : Force acting on m_1 due to m_2

$$\vec{F}_{12} = G_N \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12}$$
 (80)

• \vec{F}_{21} : Force acting on m_2 due to m_1

$$\vec{F}_{21} = G_N \frac{m_2 m_1}{r_{21}^2} \hat{r}_{21} \equiv \vec{F}_{12}$$
 (81)

• On the surface of the Earth, the force acting on a mass *m* is:

$$|\vec{F}| = mg = G_N \frac{mm_E}{R_E}^2 \Longrightarrow g = G_N \frac{m_E}{R_E^2}$$

$$(82)$$

$$Physics \longrightarrow Fick Bolismin Physics \longrightarrow$$

•
$$\vec{F}_{12} = G_N \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12}$$
 is valid for point masses

• If various masses *m_i* exert gravitational attraction on a mass *M*, the total force acting on *M* is:

$$\vec{F} = G_N \sum_i \frac{m_i M}{r_i^2} \hat{r}_i \tag{83}$$

where r_i is the distance of mass m_i from M, and \hat{r}_i is the unit vector pointing from M towards m_i .

Altuğ Özpineci (METU)