Newton's Law of Gravitation

• \vec{F}_{12} : Force acting on m_1 due to m_2

$$\vec{F}_{12} = G_N \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12}$$
 (80)

• \vec{F}_{21} : Force acting on m_2 due to m_1

$$\vec{F}_{21} = G_N \frac{m_2 m_1}{r_{21}^2} \hat{r}_{21} \equiv \vec{F}_{12}$$
 (81)

• On the surface of the Earth, the force acting on a mass *m* is:

$$|\vec{F}| = mg = G_N \frac{mm_E}{R_E}^2 \Longrightarrow g = G_N \frac{m_E}{R_E^2}$$

$$(82)$$

$$Physics \longrightarrow Fick Bolismin Physics \longrightarrow$$

Altuă Özpineci (METU

- A MATHEMATICAL FORMULAS A-I
- **B** DERIVATIVES AND INTEGRALS A-6
- C MORE ON DIMENSIONAL ANALYSIS A-S
- D GRAVITATIONAL FORCE DUE TO A SPHERICAL MASS DISTRIBUTION A-9
- E DIFFERENTIAL FORM OF MAXWELLS EQUATIONS A-12
- F SELECTED ISOTOPES A-14

Fizik Bölümü

Department

4 D K 4 B K 4 B K 4

Physics

Measured value of g is position dependent:

- Shape of earth is not a sphere
- Mass density is not uniform
- Earth is rotating, i.e. any reference frame fixed on the surface of the Earth is non-inertial. At the poles, *g* would be measured larger than on the equator.

Measured value of g is position dependent:

- Shape of earth is not a sphere
- Mass density is not uniform
- Earth is rotating, i.e. any reference frame fixed on the surface of the Earth is non-inertial. At the poles, *g* would be measured larger than on the equator.

Measured value of *g* is position dependent:

- Shape of earth is not a sphere
- Mass density is not uniform
- Earth is rotating, i.e. any reference frame fixed on the surface of the Earth is non-inertial. At the poles, *g* would be measured larger than on the equator.

• $\vec{F}_{12} = G_N \frac{m_1 m_2}{r_{12}^2} \hat{r}_{12}$ is valid for point masses

Altuğ Özpineci (METU)

 If various masses m_i exert gravitational attraction on a mass M, the total force acting on M is:

$$\vec{F} = G_N \sum_i \frac{m_i M}{r_i^2} \hat{r}_i \tag{83}$$

where r_i is the distance of mass m_i from M, and \hat{r}_i is the unit vector pointing from M towards m_i .

- Superposition of forces is valid only in Newton's Theory of gravity
- Superposition of forces is not valid on General Theory of Relativity

Gravitational Force of a Ring on a Mass

•
$$\delta m = M \frac{\delta \theta}{2\pi}$$

•
$$|\vec{F}_1| = |\vec{F}_2| = G_N rac{\delta mm}{D^2}$$

- $\vec{F}_1 + \vec{F}_2$ will point from the mass *m* to the center of the ring with a magnitude $F_{\parallel} = G_N \frac{(2\delta m)m}{D^2} \cos \alpha$
- *F*_{||} does not depend on which δ*m* along the ring is considered

•
$$\cos \alpha = \frac{L}{D}$$

• Summing over all δm gives

$$|\vec{F}| = G_N \frac{Mm}{D^2} \cos \alpha = G_N \frac{MmL}{D^3} = G_N \frac{MmL}{(L^2 + R^2)^{\frac{3}{2}}}$$
(84)
• \vec{F} points towards the center of the ring

Altuğ Özpineci (METU)

PHYS109 103 / 113

Gravitational Force of a Shell on a Mass

- The ring has has its center at z = kand sees and angle $d\theta$.
- The area of the ring: $dA = 2\pi \tilde{R} r d\theta$

•
$$\tilde{R}^2 + (R-k)^2 = \ell^2, \, \tilde{R}^2 + k^2 = r^2$$

• The mass of the ring:

$$dM = \frac{dA}{4\pi r^2}M = \frac{\tilde{R}M}{2r}d\theta$$

• The force due to the ring:

$$d\vec{F} = -G_N dM \frac{mL}{\ell^3} \hat{z} = -G_N \frac{Mm}{r} \frac{(R-k)\tilde{R}}{2\ell^3} d\theta \hat{z}$$
(85)

Altuğ Özpineci (METU)

PHYS109 104 / 113

210

Gravitational Force of a Shell on a Mass

ATTENTION

In deciding the sphere into rings, once can either assume that dk is constant, or $rd\theta$ is constant for each ring. When the ring is opened into an approximate rectangle, $rd\theta$ is the height of this rectangle. Hence it is better (and simpler) to assume that $rd\theta$ is constant for each ring. This implies that dk, (i.e. the distance between the centers of the inner and the outer circles of the ring) i not constant. If one takes dkconstant, especially closer to the point k = R, when you open the ring, it will no longer look like a rectangle

VU

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 104 / 113

Department

Physic

k

θ

(85)

Fizik

Gravitational Force of a Shell on a Mass

$$d\vec{F} = -G_N \frac{Mm}{r} \frac{(R-k)\tilde{R}}{2\ell^3} d\theta \hat{z}$$
(85)
$$\ell^2 = r^2 + R^2 - 2rR\cos\theta$$
(86)
$$k = r\cos\theta = \frac{R}{2} + \frac{r^2 - \ell^2}{2R}$$
(87)
$$\tilde{R} = r\sin\theta$$
(88)

•
$$\ell d\ell = rR\sin\theta d\theta = R\tilde{R}d\theta \Longrightarrow d\theta = \frac{\ell}{R\tilde{R}}d\ell$$

$$d\vec{F} = -G_N \frac{Mm}{rR} \frac{(R-k)}{2\ell^2} d\ell \tag{89}$$

$$= -G_N \frac{Mm}{2rR} \left(\frac{R}{2} - \frac{r^2 - \ell^2}{2R}\right) \frac{d\ell}{\ell^2} \xrightarrow{\text{Department}} \underbrace{P_{\text{Hyder}}}_{\text{Physice}} \underbrace{Q_{\text{Physice}}}_{\text{Physice}} \underbrace{Q_{\text{Physice}} \underbrace{Q_{\text{Physice}}}_{\text{Physice}} \underbrace{Q_{\text{Physice}} \underbrace{Q_{\text{Physice}}}_{\text{Physice}} \underbrace{Q_{\text{Physice}} \underbrace{Q_{\text{Physice}} \underbrace{Q_{\text{Physice}} \underbrace{Q_{\text{Physice}}$$

Gravitational Force of a Shell on a Mass

Z R R

$$d\vec{F} = -G_N \frac{Mm}{2rR} \left(\frac{R}{2} - \frac{r^2 - \ell^2}{2R}\right) \frac{d\ell}{\ell^2} \hat{z}$$

- If the point is outside the shell, $R r \le \ell \le R + r$, $\vec{F} = \int_{R-r}^{R+r} d\ell(\cdots) = -G_N \frac{Mm}{R^2} \hat{z}$
- If the point is inside the shell, $r R \le \ell \le R + r$, $\vec{F} = \int_{r-R}^{R+r} d\ell(\cdots) = 0$
- Inside the shell, zero gravitational attraction, outside the shell, shell acts as if all its mass in at its center

Planet Vulcan

Planet Vulcan was hypothesized to exist between the Sun and Mercury

Altuğ Özpineci (METU)

Phys109-MECHANICS

Gravity and Planetary Motion

Dark Matter

Consider a simple model of a galaxy as a sphere of uniform mass density. The galaxy will spiral around its center. consider a star on its equilateral plane at a distance r from the center. Calculate and sketch its speed as a function of r.

• If the star is inside the galaxy, block will feel the the attraction for only the mass inside the sphere of radius *r*: $m(r) = \frac{4\pi}{3}\rho r^3$

• This is the centripetal force:

$$G_{N} \frac{m\left(\frac{4\pi}{3}\rho r^{3}\right)}{r^{2}} = m \frac{v^{2}}{r} \quad (85)$$

$$\Rightarrow v = r \left(G_{N} \frac{4\pi}{3}\rho\right)^{\frac{1}{2}} \xrightarrow{\text{Department}}_{\text{Physics}} \bigoplus_{\text{physics}} (85)$$

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 106 / 113

Dark Matter

Consider a simple model of a galaxy as a sphere of uniform mass density. The galaxy will spiral around its center. consider a star on its equilateral plane at a distance r from the center. Calculate and sketch its speed as a function of r.

• If the star is outside the galaxy, then

$$G_N \frac{m\left(\frac{4\pi}{3}\rho R^3\right)}{r^2} = m \frac{v^2}{r} \qquad (85)$$

$$\implies v = \frac{1}{\sqrt{r}} \left(G_N \frac{4\pi}{3} R^3 \right) \qquad (86)$$

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 106 / 113

Dark Matter

Consider a simple model of a galaxy as a sphere of uniform mass density. The galaxy will spiral around its center. consider a star on its equilateral plane at a distance r from the center. Calculate and sketch its speed as a function of r.

• If the star is outside the galaxy, then

$$G_N \frac{m\left(\frac{4\pi}{3}\rho R^3\right)}{r^2} = m \frac{v^2}{r} \qquad (85)$$

$$\implies v = \frac{1}{\sqrt{r}} \left(G_N \frac{4\pi}{3} R^3 \right) \qquad (86)$$

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 106 / 113

Dark Matter

The galaxy appears to have a larger mass than is seen

Gravitational Field

- According to Newton's Gravitation Law, gravity acts at a distance
- To avoid the concept of action at a distance, gravitational *field* is hypothesized
- Every mass, M, creates a field \vec{g} around it given by

$$\vec{g} = -G_N \frac{M}{r^2} \hat{r} \tag{85}$$

 Every other mass m placed in this field, feels a force due to the field at its location given by

$$\vec{F} = m\vec{g} \tag{86}$$

• • • • • • • • • • • •

PHYS109 107 / 113

Departmen of Physics

Equivalence Principle

- Mass appears in Newton's second Law: $\vec{F} = m\vec{a}$: inertial mass
- Mass appears in Newton's law of gravity: $\vec{g} = -G_N \frac{m}{r^2} \hat{r}$: gravitational mass
- Equivalence principle: gravitational mass and inertial mass are equal. WHY?
- Einstein's theory of relativity relies on this equality

Weightlessness

• The forces acting on the mass *m* are:

$$\vec{w} = -mg\hat{z} \tag{87}$$

$$\vec{N} = N\hat{z}$$
 (88)

$$\vec{F}_T = (N - mg)\hat{z}$$
 (89)

Department of Physics

PHYS109

112/113

where g is the gravitational acceleration at the point of the mass m.

- In a satellite, whole system accelerates. If the acceleration is also in the \hat{z} direction, $\vec{F}_T = m\vec{a} \equiv ma\hat{z}$
- Then $N mg = ma \Longrightarrow N = m(g + a)$
- If a = -g, the object appears massless

Weightlessness

• The forces acting on the mass *m* are:

$$\vec{w} = -mg\hat{z}$$
 (87)

$$\vec{N} = N\hat{z}$$
 (88)

$$ec{F}_{T}=(N-mg)\hat{z}$$
 (89)

Department of Physics

PHYS109

112/113

where g is the gravitational acceleration at the point of the mass m.

- In a satellite, whole system accelerates. If the acceleration is also in the \hat{z} direction, $\vec{F}_T = m\vec{a} \equiv ma\hat{z}$
- Then $N mg = ma \Longrightarrow N = m(g + a)$
- If a = -g, the object appears massless

QUIZ 3

Q: Consider a mass m attached at the end of a massless string. The string has a length L. The mass is moving uniformly around a circle of radius R. (ignore gravity and friction)

- Draw the free body diagram at the shown instant.
- Write the force(s) acting on the mass *m* in terms of their components, i.e. in the form $\vec{F} = F_x \hat{x} + F_y \hat{y}$. Use the given coordinate axes.

Find a relation between T, L and v.

