Example: A mass Inside a Spherical Mass

Example: A mass Inside a Spherical Mass

- Divide the sphere into an inner sphere with radius r and outer shell.
- Outer shell will not exert any force.
- Inner shell will have a mass:

$$
M(r)=\frac{M}{\frac{4}{3} \pi R^{3}} \frac{4}{3} \pi r^{3}=M\left(\frac{r}{R}\right)^{3}
$$

- The force exerted by the inner shell is

$$
\vec{F}=-G_{N} M\left(\frac{r}{R}\right)^{3} \frac{m}{r^{2}} \hat{r}=-G_{N} \frac{M m}{R^{3}} \vec{r}
$$

Example: A sphere with another sphere carved out

A sphere of radius R_{2} is carved out of another sphere of radius R_{1}. The position of the center of the carved sphere is denoted by \vec{d}. The mass density of the system is ρ. If a mass m is placed inside the cavity, what will be the force that this mass m will feel?

Example: A sphere with another sphere carved out

- Let $\vec{r}_{1}\left(\vec{r}_{2}\right)$ be the position of the mass m relative to the center of the large (small) sphere.

Example: A sphere with another sphere carved out

- Let $\vec{r}_{1}\left(\vec{r}_{2}\right)$ be the position of the mass m relative to the center of the large (small) sphere.
- $\vec{F}_{\text {full sphere }}=\vec{F}_{T}+\vec{F}_{\text {carved out mass }} \Longrightarrow$ $\vec{F}_{T}=\vec{F}_{\text {full }}$ sphere $-\vec{F}_{\text {carved out mass }}$
- The cavity can be modeled as a mass with mass density $-\rho$.

Example: A sphere with another sphere carved out

- $\vec{F}_{\text {full sphere }}=\vec{F}_{T}+\vec{F}_{\text {carved out mass }} \Longrightarrow$ $\vec{F}_{T}=\vec{F}_{\text {full }}$ sphere $-\vec{F}_{\text {carved out mass }}$
- The cavity can be modeled as a mass with mass density $-\rho$.
- Large sphere:

$$
\vec{F}_{L}=-G_{N} \frac{\frac{\rho_{3} \pi r_{1}^{3}}{r_{1}^{2}} \hat{r}_{1}=-\frac{4 \pi}{3} G_{N} \rho \vec{r}_{1} .}{}
$$

- Small sphere: $\vec{F}_{s}=-\frac{4 \pi}{3} G_{N}(-\rho) \vec{r}_{2}$
$\vec{F}_{T}=\vec{F}_{L}+\vec{F}_{S}=-\frac{4 \pi}{3} G_{N} \rho\left(\vec{r}_{1}-\vec{r}_{2}\right)=\frac{4 \pi}{3} G_{N} \rho \vec{d}$
Gravitational attraction is uniform inside the cavity.
CHALLENGE: Can you prove this without using vectors? (not recommended)

Example: Circular Orbits

- Let $M_{E}\left(M_{s}\right)$ be the mass of Earth (satellite)
- What is the speed of the satellite?
- $m \frac{v^{2}}{R}=G_{N} \frac{M m}{R^{2}} \Longrightarrow v=\sqrt{\frac{G_{N} M}{R}}$
- The closer the satellite is to the Earth, the faster it should be.
- The period of the satellite is

$$
T=\frac{2 \pi R}{v}=\frac{2 \pi}{\sqrt{G_{N} M}} R^{\frac{3}{2}} \Longrightarrow \frac{T^{2}}{R^{3}}=\frac{2 \pi}{\sqrt{G_{N} M}}
$$

- Measuring the ratio T^{2} / R^{3}, it is possible to determine the mass of the sun.

Example: Circular Orbits

- Let $M_{E}\left(M_{s}\right)$ be the mass of Earth (satellite)
- What is the speed of the satellite?
- $m \frac{v^{2}}{R}=G_{N} \frac{M m}{R^{2}} \Longrightarrow v=\sqrt{\frac{G_{N} M}{R}}$
- The closer the satellite is to the Earth, the faster it should be.
- The period of the satellite is

$$
T=\frac{2 \pi R}{v}=\frac{2 \pi}{\sqrt{G_{N} M}} R^{\frac{3}{2}} \Longrightarrow \frac{T^{2}}{R^{3}}=\frac{2 \pi}{\sqrt{G_{N} M}}
$$

- Geocentric orbits are those for which the relative position of the

