The Computer aspect of HCI

Projects

- Project Phase One reports are due next week: March 10.
- Submit a printed hard-copy of your report in class on March 10.
- If you or your teammates cannot attend the lecture, submit your report to Gulsah Tumuklu at A-401 before class on March 10.
- Check the newsgroup for announcements: looking for teammates? etc.

Reading assignment

- Again no reading assignment this week.
- Work on your project.

The Computer

a computer system is made up of various elements

each of these elements affects the interaction

- input devices text entry and pointing
- output devices screen (small&large), digital paper
- virtual reality special interaction and display devices
- $-\,$ physical interaction $-\,$ e.g. sound, haptic, bio-sensing
- $-\,$ paper as output (print) and input (scan)
- memory RAM & permanent media, capacity & access
- processing speed of processing, networks

How many ...

- computers in your house? - hands up, none, 1, 2, 3, more!!
- computers in your pockets?

How many computers ...

in your house?

- PC

- TV, VCR, DVD, HiFi, cable/satellite TV
- microwave, cooker,
- washing machine central heating
- security system

in your pockets?

- PDA
- phone, camera
- smart card, card with magnetic strip?
- electronic car key
- USB memory
- can you think of more?

text entry devices

keyboards (QWERTY et al.) chord keyboards, phone pads handwriting, speech

Keyboards

- Most common text input device
- Allows rapid entry of text by experienced users
- Keypress causes a character code to be sent
- Usually connected by cable, but can be wireless

layout - QWERTY

- Standardized layout
 - but ...
 - non-alphanumeric keys are placed differently
 - accented symbols needed for different scripts
 - minor differences between UK and USA keyboards
- QWERTY arrangement not optimal for typing
 layout to prevent typewriters jamming!
- Alternative designs allow faster typing but large social base of QWERTY typists produces reluctance to change.

QWERTY (ctd) 12345678900 00WERTYU10P0 0ASDEGHJKL00 SPACE

alternative keyboard layouts

Alphabetic

- keys arranged in alphabetic order
- not faster for trained typistsnot faster for beginners either!
- not laster for beginners e

Dvorak

- common letters under dominant fingers
- biased towards right hand
- common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change

special keyboards

- designs to reduce fatigue
- for one handed use e.g. the Maltron left-handed keyboard

Handwriting recognition

- Text can be input into the computer, using a pen and a digesting tablet

 natural interaction
- Technical problems:
 - capturing all useful information stroke path,
 - pressure, etc. in a natural manner – segmenting joined up writing into individual letters
 - interpreting individual letters
 - coping with different styles of handwriting
- Used in PDAs, and tablet computers leave the keyboard on the desk!

Speech recognition

- Improving rapidly
- Most successful when:
 - single user initial training and learns peculiarities
 limited vocabulary systems
- Problems with
 - external noise interfering
 - imprecision of pronunciation
 - large vocabularies
 - different speakers

positioning, pointing and drawing

mouse, touchpad trackballs, joysticks etc. touch screens, tablets eyegaze, cursors

How does it work?

Two methods for detecting motion

- Mechanical
 - Ball on underside of mouse turns as mouse is moved
 - Rotates orthogonal potentiometers
 - Can be used on almost any flat surface
- Optical
 - light emitting diode on underside of mouse
 - may use special grid-like pad or just on desk
 - less susceptible to dust and dirt
 - detects fluctuating alterations in reflected light intensity to calculate relative motion in (x, z) plane

Even by foot ...

- some experiments with the footmouse
 - controlling mouse movement with feet ... - not very common :-)
- but foot controls are common elsewhere: - car pedals
 - sewing machine speed control
 - organ and piano pedals

Touchpad

- small touch sensitive tablets
- · 'stroke' to move mouse pointer
- used mainly in laptop computers
- good 'acceleration' settings important
 - fast stroke
 - lots of pixels per inch moved
 - initial movement to the target
 - slow stroke · less pixels per inch
 - for accurate positioning

Trackball and thumbwheels

Trackball

- ball is rotated inside static housing • like an upsdie down mouse!
- relative motion moves cursor
- indirect device, fairly accurate
- separate buttons for picking
- very fast for gaming
- used in some portable and notebook computers.

Thumbwheels ...

- for accurate CAD two dials for X-Y cursor position
- for fast scrolling single dial on mouse

Joystick and keyboard nipple

Joystick

- indirect
- pressure of stick = <u>velocity</u> of movement
- buttons for selection
- on top or on front like a trigger
- often used for computer games aircraft controls and 3D navigation

Keyboard nipple

- for laptop computers
- miniature joystick in the middle of the keyboard

Touch-sensitive screen

- Detect the presence of finger or stylus on the screen. works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- Advantages:
 - fast, and requires no specialized pointer
 - good for menu selection
 - suitable for use in hostile environment: clean and safe from damage.
- Disadvantages:
 - finger can mark screen
 - imprecise (finger is a fairly blunt instrument!)
 difficult to select small regions or perform accurate drawing
 - lifting arm can be tiring

Stylus and light pen

Stylus

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or magnetic detection
- used in PDA, tablets PCs and drawing tables

Light Pen

- now rarely used
- uses light from screen to detect location

BOTH ...

- very direct and obvious to use
- but can obscure screen

Digitizing tablet

- · Mouse like-device with cross hairs
- used on special surface
 rather like stylus
- very accurate

 used for digitizing maps

Eyegaze

- control interface by eye gaze direction
 e.g. look at a menu item to select it
- uses laser beam reflected off retina

 ... a very low power laser!
- potential for hands-free control
- high accuracy requires headset
- cheaper and lower accuracy devices available like a small webcam positioned

under the screen

Cursor keys

- Four keys (up, down, left, right) on keyboard.
- Very, very cheap, but slow.
- Useful for not much more than basic motion for textediting tasks.
- No standardized layout, but inverted $``T'', \,most \,\, common$

Discrete positioning controls in phones, TV controls etc. cursor pads or mini-joysticks discrete left-right, up-down mainly for menu selection Discrete position of the provided set of the provided set

resolution and color depth

- Resolution ... used (inconsistently) for
 - number of pixels on screen (width x height)
 e.g. SVGA 1024 x 768, PDA perhaps 240x400 - density of pixels (in pixels or dots per inch - dpi) typically between 72 and 96 dpi
- Aspect ratio
 - ration between width and height
 - 4:3 for most screens, 16:9 for wide-screen TV
- Color depth:
 - how many different colors for each pixel?
 - black/white or greys only
 - 256 from a pallete
 - 8 bits each for red/green/blue = millions of colors

anti-aliasing

Jaggies

diagonal lines that have discontinuities in due to horizontal raster scan process

Anti-aliasing

- softens edges by using shades of line colour
- also used for text

Cathode ray tube

- Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows
- used in TVs and computer monitors

Health hints

- do not sit too close to the screen
- do not use very small fonts
- do not look at the screen for long periods without a break
- do not place the screen directly in front of a bright window
- work in well-lit surroundings
- ★ Take extra care if pregnant. but also posture, ergonomics, stress

Liquid crystal displays

- Smaller, lighter, and ... no radiation problems.
- Found on PDAs, portables and notebooks, . and increasingly on desktop and even for home TV
- also used in dedicted displays: digital watches, mobile phones, HiFi controls
- How it works ..
 - Top plate transparent and polarised, bottom plate reflecting. Light passes through top plate and crystal, and reflects back to
 - eye
 - Voltage applied to crystal changes polarization and hence color
 light reflected not emitted => less eye strain

special displays

Random Scan (Directed-beam refresh, vector display)

- draw the lines to be displayed directly
- no jaggies
- lines need to be constantly redrawnrarely used except in special instruments
- Direct view storage tube (DVST)
 - Similar to random scan but persistent => no flicker
 - Can be incrementally updated but not selectively erased
 - Used in analogue storage oscilloscopes

large displays

- used for meetings, lectures, etc.
- technology
 - plasma usually wide screen
 - video walls lots of small screens together
 - projected RGB lights or LCD projector
 - hand/body obscures screen
 - may be solved by 2 projectors + clever software back-projected
 - frosted glass + projector behind

situated displays

- displays in 'public' places
 - large or small
 - very public or for small group
- display only
 - for information relevant to location
- or interactive
- use stylus, touch sensitive screem
- in all cases ... the location matters
- meaning of information or interaction is related to the location

positioning in 3D space

- cockpit and virtual controls
- steering wheels, knobs and dials ... just like real!the 3D mouse
- six-degrees of movement: x, y, z + roll, pitch, yaw
 data glove
- fiber optics used to detect finger position
- VR helmets
- detect head motion and possibly eye gaze
- whole body tracking
 - accelerometers strapped to limbs or reflective dots and video processing

3D displays

- desktop VR
 - ordinary screen, mouse or keyboard control
 - perspective and motion give 3D effect
- seeing in 3D
 - use stereoscopic vision
 - VR helmets
 - screen plus shuttered specs, etc.

also see extra slides on 3D vision

physical controls, sensors etc.

special displays and gauges sound, touch, feel, smell physical controls environmental and bio-sensing

dedicated displays

- analogue representations: - dials, gauges, lights, etc.
- digital displays: – small LCD screens, LED lights, etc.
- head-up displays

 found in aircraft cockpits
 show most important controls
 - ... depending on context

Sounds

- beeps, bongs, clonks, whistles and whirrs
- used for error indications
- confirmation of actions e.g. keyclick

Touch, feel, smell

- touch and feeling important
 - in games ... vibration, force feedback
 - in simulation ... feel of surgical instruments
 - called haptic devices
- texture, smell, taste
 current technology very limited

BMW iDrive

http://www.bmwworld.com/technology/idrive.htm

- for controlling menus
- feel small 'bumps' for each item
- makes it easier to select options by feel
- uses haptic technology from Immersion Corp.

Environment and bio-sensing

- sensors all around us
 - car courtesy light small switch on door
 - ultrasound detectors security, washbasins
 - RFID security tags in shops
 - temperature, weight, location
- ... and even our own bodies ...
 - iris scanners, body temperature, heart rate, galvanic skin response, blink rate

paper: printing and scanning

print technology fonts, page description, WYSIWYG scanning, OCR

Printing • image made from small dots • allows any character set or graphic to be printed, • critical features: • resolution • size and spacing of the dots • measured in dots per inch (dpi) • speed • usually measured in pages per minute - cost!!

Types of dot-based printers

• dot-matrix printers

- use inked ribbon (like a typewriter
- line of pins that can strike the ribbon, dotting the paper.
- typical resolution 80-120 dpi
- ink-jet and bubble-jet printers

 tiny blobs of ink sent from print head to paper
 - thy blobs of the sent from print head to pape
 typically 300 dpi or better .
- laser printer
 - like photocopier: dots of electrostatic charge deposited on drum, which picks up toner (black powder form of ink) rolled onto paper which is then fixed with heat
 - typically 600 dpi or better.

Fonts (ctd) Fonts • Font - the particular style of text Pitch Courier font Helvetica font - fixed-pitch - every character has the same width e.g. Courier Palatino font Times Roman font - variable-pitched - some characters wider □ §´ແ≡, ມີ ສ ⊗, ຸ_~ (special symbol) e.g. Times Roman - compare the 'i' and the "m" Serif or Sans-serif Size of a font measured in points (1 pt about 1/72") (vaguely) related to its height - sans-serif - square-ended strokes This is ten point Helvetica This is twelve point This is fourteen point This is eighteen point e.g. Helvetica - serif - with splayed ends (such as) e.g. Times Roman or Palatino and this is twenty-four point

Readability of text

- lowercase
 - easy to read shape of words
- UPPERCASE
 - better for individual letters and non-words e.g. flight numbers: BA793 vs. ba793
- serif fonts
 - helps your eye on long lines of printed text
 - but sans serif often better on screen

Page Description Languages

- Pages very complex
 - different fonts, bitmaps, lines, digitized photos, etc.
- Can convert it all into a bitmap and send to the printer ... but often huge !
- Alternatively Use a page description language

 sends a *description* of the page can be sent,
 - instructions for curves, lines, text in different styles, etc.
 - like a programming language for printing!
- PostScript is the most common

Screen and page

- WYSIWYG
 - what you see is what you get
 - aim of word processing, etc.
- but ...
 - screen: 72 dpi, landscape image
 - print: 600+ dpi, portrait
- can try to make them similar but never guite the same
- so ... need different designs, graphics etc, for screen and print

Scanners

- Take paper and convert it into a bitmap
- Two sorts of scanner
 - flat-bed: paper placed on a glass plate, whole page converted into bitmap
 - hand-held: scanner passed over paper, digitising strip typically 3-4" wide
- Shines light at paper and note intensity of reflection - colour or greyscale
- Typical resolutions from 600-2400 dpi

Scanners (ctd)

Used in

- desktop publishing for incorporating photographs and other images
- document storage and retrieval systems, doing away with paper storage
- + special scanners for slides and photographic negatives

Optical character recognition

- OCR converts bitmap back into text
- different fonts
 - create problems for simple "template matching" algorithms
 - more complex systems segment text, decompose it into lines and arcs, and decipher characters that way
- page format

 columns, pictures, headers and footers

Paper-based interaction

- paper usually regarded as output only
- can be input too OCR, scanning, etc.
- Xerox PaperWorks
 - glyphs small patterns of /\\//\\\
 - used to identify forms etc.
 used with scanner and fax to control applications
 - used with scanner and fax to control applications
- more recently
 - papers micro printed like wattermarks
 - identify which sheet and where you are
 special 'pen' can read locations
 - know where they are writing

memory

short term and long term speed, capacity, compression formats, access

Short-term Memory - RAM

- Random access memory (RAM)
 - on silicon chips
 - 100 nano-second access time
 - usually volatile (lose information if power turned off)
 - data transferred at around 100 Mbytes/sec
- Some non-volatile RAM used to store basic set-up information
- Typical desktop computers: 256 to 1024 Mbytes RAM

Long-term Memory - disks

- magnetic disks
 - floppy disks store around 1.4 Mbytes
 - hard disks typically 40 Gbytes to 100s of Gbytes access time ~10ms, transfer rate 100kbytes/s
- optical disks
 - use lasers to read and sometimes write
 - more robust that magnetic media
 - CD-ROM
 - same technology as home audio, ~ 600 Gbytes
 - DVD for AV applications, or very large files

Blurring boundaries

- PDAs
 - often use RAM for their main memory
- Flash-Memory
 - used in PDAs, cameras etc.
 - silicon based but persistent
 - plug-in USB devices for data transfer

speed and capacity

- what do the numbers mean?
- some sizes (all uncompressed) ...
 - HCI book, text only \sim 320,000 words, 2Mb
 - scanned page ~ 128 Mbytes
 - (11x8 inches, 1200 dpi, 8bit greyscale)
 digital photo ~ 10 Mbytes
 - digital photo ~ 10 Mbytes
 - (2-4 mega pixels, 24 bit colour)
 video ~ 10 Mbytes per second
 - (512x512, 12 bit colour, 25 frames per sec)

-slows things d o w n

Compression

• reduce amount of storage required

lossless

- recover exact text or image e.g. GIF, ZIP - look for commonalities:
 - text: AAAAAAAAABBBBBBCCCCCCCC I 10A5B8C • video: compare successive frames and store change

lossy

- recover something like original e.g. JPEG, MP3 exploit perception
- - JPEG: lose rapid changes and some colour • MP3: reduce accuracy of drowned out notes

Storage formats - text

- ASCII 7-bit binary code for to each letter and character
- UTF-8 8-bit encoding of 16 bit character set
- RTF (rich text format) text plus formatting and layout information
- SGML (standardized generalized markup language) - documents regarded as structured objects
- XML (extended markup language) - simpler version of SGML for web applications

Storage formats - media

• Images:

- many storage formats :
- (PostScript, GIFF, JPEG, TIFF, PICT, etc.) - plus different compression techniques
 - (to reduce their storage requirements)

• Audio/Video

- again lots of formats : (QuickTime, MPEG, WAV, etc.)
- compression even more important
- also 'streaming' formats for network delivery

methods of access

- large information store
 - long time to search => use index
 - what you index -> what you can access
- simple index needs exact match
- access without structure ...
 - free text indexing (all the words in a document)
 - needs lots of space!!

processing and networks

finite speed (but also Moore's law) limits of interaction networked computing

Finite processing speed

- Designers tend to assume fast processors, and make interfaces more and more complicated
- But problems occur, because processing cannot keep up with all the tasks it needs to do

 cursor overshooting because system has buffered
 - keypresses - icon wars - user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere
- Also problems if system is too fast e.g. help screens may scroll through text much too rapidly to be read

Moore's law

- computers get faster and faster!
- 1965 ...
 - Gordon Moore, co-founder of Intel, noticed a pattern
 - processor speed doubles every 18 months
 - PC ... 1987: 1.5 Mhz, 2002: 1.5 GHz
- similar pattern for memory

 but doubles every 12 months!!
 - hard disk ... 1991: 20Mbyte : 2002: 30 Gbyte
- baby born today
 - record all sound and vision
 - by 70 all life's memories stored in a very small storage media

the myth of the infinitely fast machine

- implicit assumption ... no delays an infinitely fast machine
- what is good design for real machines?
- good example ... the telephone :
- type keys too fast
 - hear tones as numbers sent down the line
 - actually an accident of implementation
- emulate in design

Limitations on interactive performance

Computation bound

- Computation takes ages, causing frustration for the user Storage channel bound
- Bottleneck in transference of data from disk to memory Graphics bound
 - Common bottleneck: updating displays requires a lot of effort - sometimes helped by adding a graphics coprocessor optimized to take on the burden

Network capacity

 Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed

Networked computing

Networks allow access to ...

- large memory and processing
- other people (groupware, email)
- shared resources esp. the web

Issues

- network delays slow feedback
- conflicts many people update data
- unpredictability

The internet

history ...

- 1969: DARPANET US DoD, 4 sites
- 1971: 23; 1984: 1000; 1989: 10000
- Today?
- common language (protocols):
 - TCP Transmission Control protocol
 - lower level, packets (like letters) between machines
 - IP Internet Protocol
 - reliable channel (like phone call) between programs on machines
 - email, HTTP, all build on top of these