SE 705 Human Computer Interaction

Spring 2008-2009 Week #5

user interface design paradigms

why study paradigms

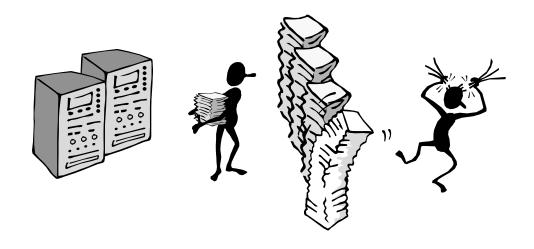
Concerns

- how can an interactive system be developed to ensure its usability?
- how can the usability of an interactive system be demonstrated or measured?

History of interactive system design provides paradigms for usable designs

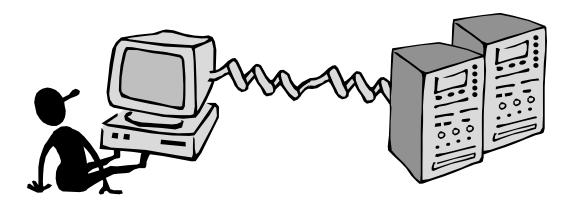
What are Paradigms

- Predominant theoretical frameworks or scientific world views
 - e.g., Aristotelian, Newtonian, Einsteinian (relativistic) paradigms in physics
- Understanding HCI history is largely about understanding a series of paradigm shifts
 - Not all listed here are necessarily "paradigm" shifts, but are at least candidates
 - History will judge which are true shifts

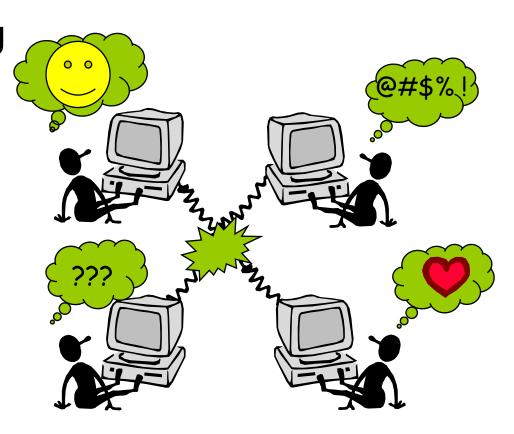

Paradigms of interaction

New computing technologies arrive, creating a new perception of the human—computer relationship.

We can trace some of these shifts in the history of interactive technologies.


The initial paradigm

Batch processing


Impersonal computing

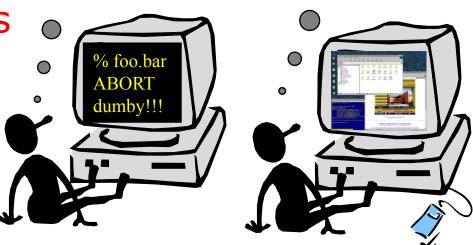
- Batch processing
- Time-sharing

Interactive computing

- Batch processing
- Timesharing
- Networking

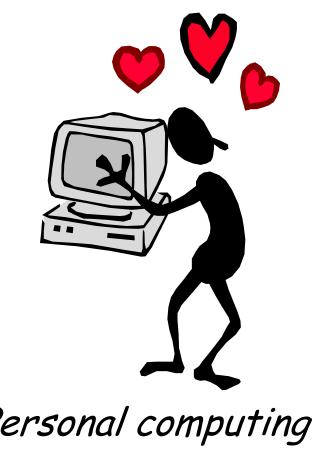
Community computing

Batch processing

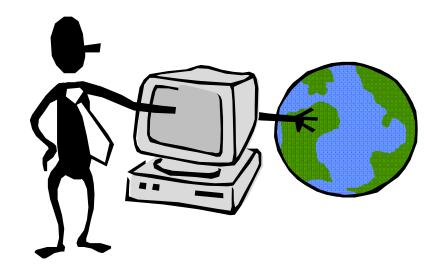

Timesharing

Networking

C...P... filename dot star... or was it R...M?

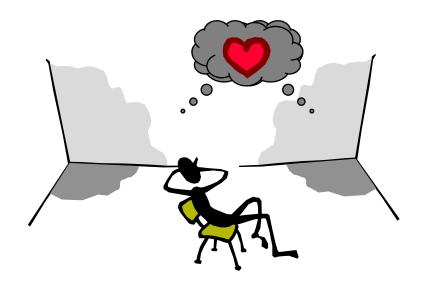

Move this file here, and copy this to there.

Graphical displays


Direct manipulation

- Batch processing
- Timesharing
- Networking
- Graphical display

Personal computing


- Batch processing
- Timesharing
- Networking
- Graphical display
- WWW

Global information

- Batch processing
- Timesharing
- Networking
- Graphical display
- WWW
- Ubiquitous
 Computing

 A symbiosis of physical and electronic worlds in service of everyday activities.

Time-sharing

- 1940s and 1950s explosive technological growth
- 1960s need to channel the power
- J.C.R. Licklider at ARPA
- single computer supporting multiple users

Video Display Units

- more suitable medium than paper
- 1962 Sutherland's Sketchpad
- computers for visualizing and manipulating data
- one person's contribution could drastically change the history of computing

Programming toolkits

- Engelbart at Stanford Research Institute
- 1963 augmenting man's intellect
- 1968 NLS/Augment system demonstration
- the right programming toolkit provides building blocks to producing complex interactive systems

Personal computing

- 1970s Papert's LOGO language for simple graphics programming by children
- A system is more powerful as it becomes easier to user
- Future of computing in small, powerful machines dedicated to the individual
- Kay at Xerox PARC the Dynabook as the ultimate personal computer

Window systems and the WIMP interface

- humans can pursue more than one task at a time
- windows used for dialogue partitioning, to "change the topic"
- 1981 Xerox Star first commercial windowing system
- windows, icons, menus and pointers now familiar interaction mechanisms

Metaphor

- relating computing to other real-world activity is effective teaching technique
 - LOGO's turtle dragging its tail
 - file management on an office desktop
 - word processing as typing
 - financial analysis on spreadsheets
 - virtual reality user inside the metaphor

Problems

- some tasks do not fit into a given metaphor
- cultural bias

Direct manipulation

- 1982 Shneiderman describes appeal of graphically-based interaction
 - visibility of objects
 - incremental action and rapid feedback
 - reversibility encourages exploration
 - syntactic correctness of all actions
 - replace language with action
- 1984 Apple Macintosh
- the model-world metaphor
- What You See Is What You Get (WYSIWYG)

Language versus Action

- actions do not always speak louder than words!
- DM interface replaces underlying system
- language paradigm
- interface as mediator
- interface acts as intelligent agent
- programming by example is both action and language

Hypertext

- 1945 Vannevar Bush and the memex
- key to success in managing explosion of information
- mid 1960s Nelson describes hypertext as non-linear browsing structure
- hypermedia and multimedia
- Nelson's Xanadu project still a dream today

Multimodality

 a mode is a human communication channel

 emphasis on simultaneous use of multiple channels for input and output

Computer Supported Cooperative Work (CSCW)

- CSCW removes bias of single user / single computer system
- Can no longer neglect the social aspects
- Electronic mail is most prominent success

The World Wide Web

- Hypertext, as originally realized, was a closed system
- Simple, universal protocols (e.g. HTTP) and mark-up languages (e.g. HTML) made publishing and accessing easy
- Critical mass of users lead to a complete transformation of our information economy.

Agent-based Interfaces

- Original interfaces
 - Commands given to computer
 - Language-based
- Direct Manipulation/WIMP
 - Commands performed on "world" representation
 - Action based
- Agents return to language by instilling proactivity and "intelligence" in command processor
 - Avatars, natural language processing

Ubiquitous Computing

"The most profound technologies are those that disappear."

Mark Weiser, 1991

Late 1980's: computer was very apparent

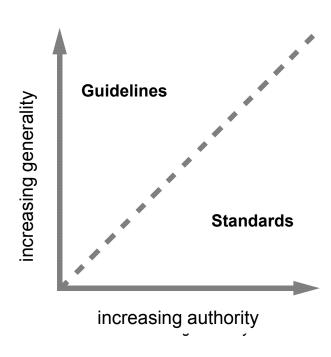
How to make it disappear?

- Shrink and embed/distribute it in the physical world
- Design interactions that don't demand our intention

Sensor-based and Contextaware Interaction

- Humans are good at recognizing the "context" of a situation and reacting appropriately
- Automatically sensing physical phenomena (e.g., light, temp, location, identity) becoming easier
- How can we go from sensed physical measures to interactions that behave as if made "aware" of the surroundings?

design rules


design rules

Designing for maximum usability

- the goal of interaction design
- Principles of usability
 - general understanding
- Standards and guidelines
 - direction for design
- Design patterns
 - capture and reuse design knowledge

types of design rules

- principles
 - abstract design rules
 - low authority
 - high generality
- standards
 - specific design rules
 - high authority
 - limited application
- guidelines
 - lower authority
 - more general application

Principles to support usability

Learnability

the ease with which new users can begin effective interaction and achieve maximal performance

Flexibility

the multiplicity of ways the user and system exchange information

Robustness

the level of support provided the user in determining successful achievement and assessment of goal-directed behaviour

Principles of learnability

Predictability

- determining effect of future actions based on past interaction history
- operation visibility

Synthesizability

- assessing the effect of past actions
- immediate vs. eventual honesty

Principles of learnability (ctd)

Familiarity

- how prior knowledge applies to new system
- guessability; affordance

Generalizability

extending specific interaction knowledge to new situations

Consistency

 likeness in input/output behaviour arising from similar situations or task objectives

Principles of flexibility

Dialogue initiative

- freedom from system imposed constraints on input dialogue
- system vs. user pre-emptiveness

Multithreading

- ability of system to support user interaction for more than one task at a time
- concurrent vs. interleaving; multimodality

Task migratability

passing responsibility for task execution between user and system

Principles of flexibility (ctd)

Substitutivity

- allowing equivalent values of input and output to be substituted for each other
- representation multiplicity; equal opportunity

Customizability

 modifiability of the user interface by user (adaptability) or system (adaptivity)

Principles of robustness

Observability

- ability of user to evaluate the internal state of the system from its perceivable representation
- browsability; defaults; reachability; persistence; operation visibility

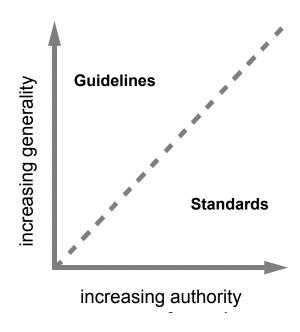
Recoverability

- ability of user to take corrective action once an error has been recognized
- reachability; forward/backward recovery; commensurate effort

Principles of robustness (ctd)

Responsiveness

- how the user perceives the rate of communication with the system
- Stability


Task conformance

- degree to which system services support all of the user's tasks
- task completeness; task adequacy

Using design rules

Design rules

- suggest how to increase usability
- differ in generality and authority

Standards

- set by national or international bodies to ensure compliance by a large community of designers standards require sound underlying theory and slowly changing technology
- hardware standards more common than software high authority and low level of detail
- ISO 9241 defines usability as effectiveness, efficiency and satisfaction with which users accomplish tasks

Guidelines

- more suggestive and general
- many textbooks and reports full of guidelines
- abstract guidelines (principles) applicable during early life cycle activities
- detailed guidelines (style guides) applicable during later life cycle activities
- understanding justification for guidelines aids in resolving conflicts

Golden rules and heuristics

- "Broad brush" design rules
- Useful check list for good design
- Better design using these than using nothing!
- Different collections e.g.
 - Nielsen's 10 Heuristics (see Chapter 9)
 - Shneiderman's 8 Golden Rules
 - Norman's 7 Principles

Shneiderman's 8 Golden Rules

- 1. Strive for consistency
- 2. Enable frequent users to use shortcuts
- 3. Offer informative feedback
- 4. Design dialogs to yield closure
- 5. Offer error prevention and simple error handling
- 6. Permit easy reversal of actions
- 7. Support internal locus of control
- 8. Reduce short-term memory load

Norman's 7 Principles

- 1. Use both knowledge in the world and knowledge in the head.
- 2. Simplify the structure of tasks.
- 3. Make things visible: bridge the gulfs of Execution and Evaluation.
- 4. Get the mappings right.
- 5. Exploit the power of constraints, both natural and artificial.
- 6. Design for error.
- 7. When all else fails, standardize.

Heuristics (by Nielsen)

- use simple and natural dialogue sequences
- speak the users' language
- minimize user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages
- prevent errors

Windows Interface Guidelines

- Set of general principles for interface design in Microsoft's software development documentation
 - directness
 - user in control
 - consistency
 - forgiveness
 - feedback
 - aesthetics
 - simplicity

Many common elements...

Nielsen

- use simple and natural dialogue sequences
- speak the users language
- minimize user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages
- prevent errors

Shneiderman

- strive for consistency
- enable frequent users to use shortcuts
- offer informative feedback
- design dialogues to yield closure
- offer simple error handling
- permit easy reversal of actions

reduce short term memory load

Microsoft

- directness
- user in control
- consistency
- forgiveness
- feedback
- aesthetics
- simplicity

Be consistent

Consistency.....

- important to enable user to build a reliable model of how the interface works
- makes the interface familiar and predictable by providing a sense of stability
- allows users to transfer existing knowledge to new tasks and focus more on tasks because they need not spend time trying to remember the differences in interaction.
- important through all aspects of the interface, names of commands, layout of information, and operational behaviour.

Many common elements...

Nielsen

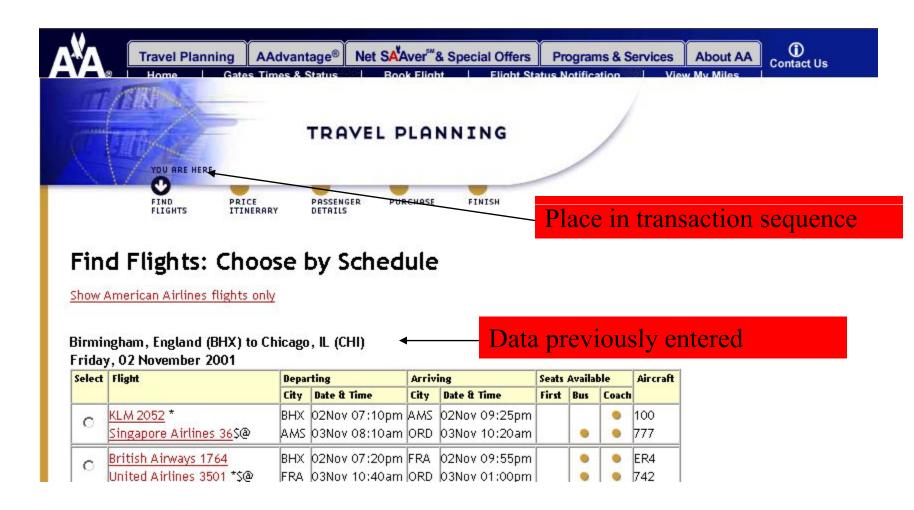
- use simple and natural dialogue sequences
- speak the users language
- minimize user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages
- prevent errors

Shneiderma

n

- strive for consistency
- enable frequent users to use shortcuts
- offer informative feedback
- design dialogues to yield closure
- offer simple error handling
- permit easy reversal of actions
- support internal locus of control
- reduce short

Microsoft


- directness
- user in control
- consistency
- forgiveness
- feedback
- aesthetics
- simplicity

Reduce memory load

Minimize user memory load

- Basic rule: don't expect the user to remember what has already been done. Make this visible at the interface
- If a command is made up of a number of pieces of data entered by the user in sequence, display these rather than expecting the user to remember the data already entered
- Help the user remember where they are in a transaction sequence – Menu 2/5 Step 1 - 4

Example: American Airlines site

Many common elements...

Nielsen

- use simple and natural dialogue sequences
- speak the users language
- minimize user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages
- prevent errors

Shneiderman

- strive for consistency
- enable frequent users to use
 - shortcuts
- offer informative feedback
- design dialogues to yield closure
- offer simple error handling
- permit easy reversal of actions
- support internal locus of control
- reduce short term memory load

Microsoft

- directness
- user in control
- consistency
- forgiveness
- feedback
- aesthetics
- simplicity

Feedback to user

Feedback from the system

- Every action the user makes should produce a perceptible response.
- The intention is to reduce user uncertainty that the system has:
 - received the last input,
 - is currently doing something about it,
 - or is waiting for the next input.
- Commands should result in some visible change to the interface
 - E.g 'mail has been sent' in response to a 'Send' command
 - Presentation of objects on screen updated to reflect their current state
- Task analysis should enable appropriate information to be identified as feedback for a specific task

Feedback: Response Time

- Response time for feedback should be appropriate to the type of user action:
 - e.g. response to keystroke instantaneous;
 response to command input may take longer
- Provide 'system busy' feedback if time will exceed a few seconds or is unpredictable
- Provide indication of how many transactions remain, for example as a bar chart or as a percentage.
- This largely disappeared as a problem with fast single user PCs and has re-appeared with distributed web-based applications

Many common elements...

Nielsen

- use simple and natural dialogue sequences
- speak the users language
- minimise user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages
- prevent errors

Shneiderma

n

- strive for consistency
- enable frequent users to use shortcuts
- offer informative feedback
- design dialogues to yield closure
- offer simple error handling
- permit easy reversal of actions
- support internal locus of control
- reduce short

Microsoft

- directness
- user in control
- consistency
- forgiveness
- feedback
- aesthetics
- simplicity

Appropriate user support

Appropriate user support

- HELP messages
 - important to recognise different types of help;
 - should be available when required and contextspecific;
 - can the user get help about what responses are possible at a given point in a dialogue.
- ERROR messages
 - should explain what is wrong and what corrective action is required;
 - should use 'jargon' familiar to the user;
 - often this support is poorly designed in terms of what information is given to the user.

Many common elements...

Nielsen

- use simple and natural dialogue sequences
- speak the users language
- minimise user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages

Shneiderman

- strive for consistency
- enable frequent users to use shortcuts
- offer informative feedback
- design dialogues to yield closure
- offer simple error handling
- permit easy reversal of actions
- support internal locus of control
- reduce short term memory

Microsoft

- directness
- user in control
- consistency
- forgiveness
- feedback
- aesthetics
- simplicity

Flexibility

Flexibility

- Measure of how well a dialogue can cater for different levels of user skill.
- Provide alternative means of achieving the same goal which match different models of how the interface works.
 - e.g. word selection: cursor to start of word and double click, click and drag, click and shift-click.
 - e.g. word deletion: word highlighted and Control +X key, select 'Cut' menu option, backspace.

Flexibility

- Adapt to the skill level of the user by:
 providing accelerators:
 allow user to answer ahead,
 provide key bindings for menu options;
 - providing macro facility;
 - accepting abbreviations for command words;
 - accepting synonyms (alternative names);
 - allowing user to choose level of instructions or help.

Many common elements...

Nielsen

- use simple and natural dialogue sequences
- speak the users language
- minimise user memory load
- be consistent
- provide feedback
- provide clearly marked exits
- provide shortcuts
- provide good error messages
- prevent errors

Shneiderman

- strive for consistency
- enable frequent users to use shortcuts
- offer informative feedback
- design dialogues to yield closure
- offer simple error handling
- permit easy reversal of actions
- support internal locus of control
- reduce short term memory load

Microsoft

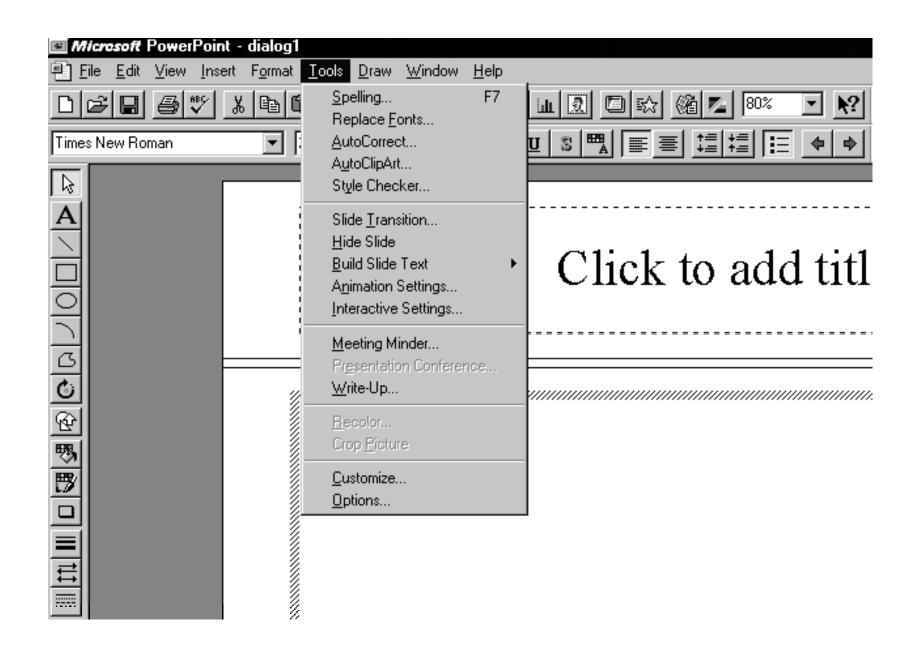
- directness
- user in control
- consistency
- forgiveness
- feedback
- aesthetics
- simplicity

User in control

User in control

- user initiates actions, not the computer or software
- use techniques to automate tasks, but implement them in a way that allows the user to chose or control the automation.
- users must be able to personalize aspects of the interface, such as colour, fonts, or other options

Minimal user input


- Balance between number of keystrokes or mouse movements/clicks and memory load.
- Reducing keying errors increases speed of data entry.
- Allow selection from a list rather than typing in a value (recognise rather than recall).
- Edit a command that has produced an error rather than retyping the command.
- Do not request input of information which can be derived automatically or which has been entered previously.
- Use default values.

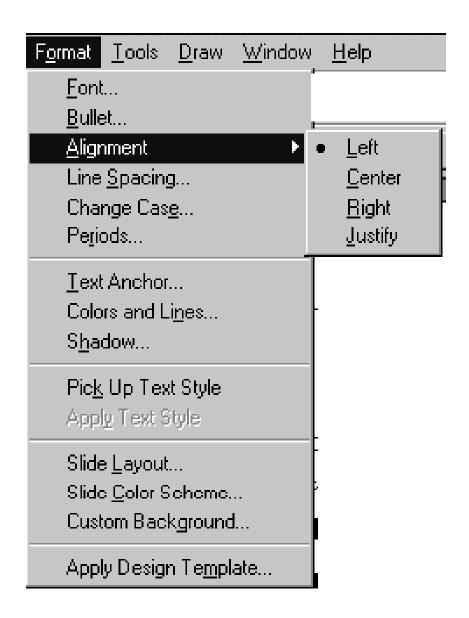
Menus

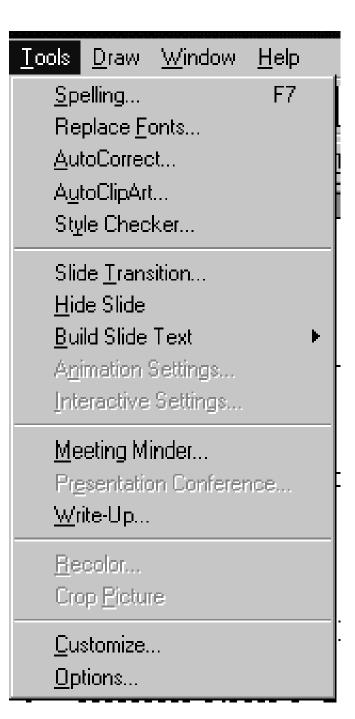
- Usually a collection of actions, structured into a list from which a user chooses
- Actions applied to objects
 - Explicitly selected by user format + font...
 [selected text]
 - Implicitly assumed by system print [current file]
 - Pop-up menu over selected object shows common actions on that object
- Actions may be represented
 - by text (e.g pull-down menu)
 - by icons (e.g toolbar)
- Actions completed
 - Immediately by selecting menu item
 - Following collection of more data from user (via a dialogue box)

Overloading menus

- Most common Windows applications use an 'anything, anytime' approach – i.e., all commands are available to the user at all times
- Leads to large, cumbersome menu structures where the user can forget how to find a particular command
- Toolbars attempt to provide shortcuts to frequently used items
 - order of icons in toolbars different from items in pull-down menus representing same actions
- Many CAD systems use an alternative, "mode" approach where a general type of operation, or task is selected
 - Only a restricted set of menus relevant to that operation are displayed
- This approach is now used in some MS applications

Menu Structure


'Structures should reflect users expectations.. and support users flow of work' (ISO 9241/14)


Priorities

- Conventional categories (file, edit,...)
- Use of dividers to break menus into groups
- Logical groups of related actions (cut,copy,paste)
- Arbitrary groups
 - consistently ordered, numerically or alphabetically

Sequencing options within groups

- consistency use the same relative order of items where the group is presented again
- **importance** place important items first in the group
- **conventional** order e.g days of the week
- order of use e.g 'copy' precedes 'paste'
- **frequency** of use
 - if frequency of option is known, place frequent items first
- alphabetical order
- What ordering rules have been applied in the next slide?

Functional Objectives with Screen Layout

- arrange items on screen to give highest probability of eliciting an acceptable level of human performance
- the user will be able
 - extract information she is seeking
 - identify related groups of information
 - distinguish exceptional items (warnings and error messages)
 - determine what action is necessary

Formatting recommendations

split strings more than 6 alphanumerics into smaller groups

```
(bad) (good)
ABBA347686A2 ABBA 347686 A2
ABBA456388A3 ABBA 456388 A3
```

 identical data should be presented in the same way even if varitions in input format are tolerated

```
30 11 95
30 Nov 1995 -> 30/11/95 (for example)
30 11 1995
30th nov 95
```

Formatting recommendations

 data should be presented in full version even if abbreviated input allowed, provide feedback to user

```
Party: [ ch,cai] Chemical Bank, Cairo
```

Formatting recommendations

numeric codes displayed with right justification

47321	47321
539	539
67	67
482645	482645

lists of numeric with decimal points should be aligned around the point

```
34.723
43.908
2341.5
```

Labeling in screen design

- descriptive title or phrase adjacent to a group of related items or information
- ensure labels are meaningful to the user
- labeling should be visually distinct from the data
- data labeling should not be able to be confused with help messages or command descriptions

Labeling in screen design

 use consistent relationship between labels and data being described

```
e.g. above and left justified Name:

[ ]
```

 include units in label to reduce ambiguity

```
e.g. Weight( Kg):
```

Aesthetic issues

- Design is valued for its fitness to a particular user and task
- Design aesthetics is intended to make the product or system appear attractive & appealing
- Nielsen advocates Simplicity particularly for Website design
- However careful use of color, graphics and formatting can make the design more aesthetically pleasing
 - Need to get the right balance

Style guides and sources of design guidance

- Plenty of these....
- Manufacturers
- Web-based style guides e.g., Yale Style Manual
 - http://info.med.yale.edu/caim/manual/index.html

Optional readings

- The Promise of Pattern Languages for Interaction Design
 - http://www.it.bton.ac.uk/staff/lp22/HF200 0.html
- Interaction Design and Agile Methods
 - http://webservices.xml.com/pub/a/ws/200 2/09/03/udell.html

Summary

Principles for usability

- repeatable design for usability relies on maximizing benefit of one good design by abstracting out the general properties which can direct purposeful design
- The success of designing for usability requires both creative insight (new paradigms) and purposeful principled practice

Using design rules

standards and guidelines to direct design activity

Reading Assignment #3

Dynamic Positioning Systems
 Usability and Interaction Styles

by Bjorneseth et al.

ACM NordiCHI 2008