- Ask questions: let me know how you perceive nature so that if there is a misperception, we can correct it
- Ask simple questions
- if you have any doubt, repeat what you have understood. It need not be in the form of a question
- Don't try to guess the type of questions that I can ask, try to understand nature
- Bad habits that you have learned in years takes more than a few months to correct!

The only forces that we will study in this year are gravity, and EM force. EM force represents itself through

- Friction
- Any pull or a push (e.g. Normal Force, forced due to the tension on a string, force acting by a spring)

TRACKER Software (http://www.cabrillo.edu/ dbrown/tracker/)

Review of Work Done By Gravity

- $W_{\text {tot }}=\Delta T$ where $T=\frac{1}{2} m v^{2}$
- $W_{G}=-m g \Delta h$ depends only on the height difference, and on nothing else
- If an object moves under the influence of gravity only then throughout the motion

$$
\begin{equation*}
\frac{1}{2} m v^{2}+m g h=\text { const } \tag{97}
\end{equation*}
$$

Work Done By Gravity

- The force acting on an object of mass m is $\vec{F}_{w}=-m g \hat{z}(\hat{z}$ points upwards)
- If the object is displaced by $d \vec{\ell}$, then $d W=\vec{F}_{w} \cdot d \vec{\ell}=-m g d z$, i.e. the work done by its weight is proportional to the change in its z coordinate (its height)
- As the object goes from P_{1} to P_{2}, the to calculate the total work, just sum the changes in its height. Hence total work is $W_{\text {tot }}=-m g \Delta h$

Work Done By Friction

- Assume a constant friction force of magnitude F_{f}.
- a, b and c are the corresponding length.
- $W_{P_{1} \rightarrow O}=-F_{f} a$
- $W_{O \rightarrow P_{2}}=-F_{f} b$
- $W_{P_{1} \rightarrow O \rightarrow P_{2}}=-F_{f}(a+b)$
- $W_{P_{1} \rightarrow P_{2}}=-F_{f} C \neq-F_{f}(a+b)$
- Hence the work done by friction depends on how one goes from the initial point to the final point

Example: $\vec{F}=a x \hat{x}+b y \hat{y}$

Work done by the force as one goes from
A to B through C :

$$
W_{A \rightarrow C \rightarrow B}=W_{A \rightarrow C}+W_{C \rightarrow B}
$$

- Along the path $A \rightarrow C, x=x_{0}$ and hence $\vec{F}=a x_{0} \hat{x}+b y \hat{y}, d \vec{\ell}=d y \hat{y}$
- $d W=\vec{F} \cdot d \vec{\ell}=b y d y$

$$
\begin{align*}
\int_{0}^{W_{A \rightarrow C}} d W & =\int_{y_{0}}^{y_{1}} b y d y \tag{98}\\
W_{A \rightarrow C} & =\frac{1}{2} b y_{1}^{2}-\frac{1}{2} b y_{0}^{2} \tag{99}
\end{align*}
$$

Example: $\vec{F}=a x \hat{x}+b y \hat{y}$

Work done by the force as one goes from A to B through C :

$\vec{F}=a x \hat{x}+b y \hat{y}$
$W_{A \rightarrow C}=\frac{1}{2} b y_{1}^{2}-\frac{1}{2} b y_{0}^{2}$

$$
W_{A \rightarrow C \rightarrow B}=W_{A \rightarrow C}+W_{C \rightarrow B}
$$

- Along the path $A \rightarrow C, y=y_{1}$ and hence $\vec{F}=a x \hat{x}+b y_{1} \hat{y}, d \vec{\ell}=d x \hat{x}$
- $d W=\vec{F} \cdot d \vec{\ell}=a x d x$

$$
\begin{align*}
\int_{0}^{W_{C \rightarrow B}} d W & =\int_{x_{0}}^{x_{1}} a x d x \tag{98}\\
W_{C \rightarrow B} & =\frac{1}{2} a x_{1}^{2}-\frac{1}{2} a x_{0}^{2} \tag{99}
\end{align*}
$$

Example: $\vec{F}=a x \hat{x}+b y \hat{y}$

$\vec{F}=a x \hat{x}+b y \hat{y}$
$W_{A \rightarrow C}=\frac{1}{2} b y_{1}^{2}-\frac{1}{2} b y_{0}^{2}$
$W_{C \rightarrow B}=\frac{1}{2} a x_{1}^{2}-\frac{1}{2} a x_{0}^{2}$

Work done by the force as one goes from A to B through C :

$$
\begin{aligned}
& W_{A \rightarrow C \rightarrow B}=W_{A \rightarrow C}+W_{C \rightarrow B} \\
& W_{A \rightarrow C \rightarrow B}= \\
& \left(\frac{1}{2} a x_{1}^{2}+\frac{1}{2} b y_{1}^{2}\right)-\left(\frac{1}{2} a x_{0}^{2}+\frac{1}{2} b y_{0}^{2}\right)
\end{aligned}
$$

Example: $\vec{F}=a x \hat{x}+b y \hat{y}$

Work done by the force as one goes from A to B through a straight line:

$W_{A \rightarrow C}=\frac{1}{2} b y_{1}^{2}-\frac{1}{2} b y_{0}^{2}$
$W_{C \rightarrow B}=\frac{1}{2} a x_{1}^{2}-\frac{1}{2} a x_{0}^{2}$

- Let $\vec{r}_{A}=x_{0} \hat{x}+y_{0} \hat{y}, \vec{r}_{B}=x_{1} \hat{x}+y_{1} \hat{y}$, $\vec{r}_{A B}=\vec{r}_{B}-\vec{r}_{A}$
- Any point on the trajectory can be written as $\vec{r}=\vec{r}_{A}+\lambda \vec{r}_{A B} ; 0 \leq \lambda \leq 1$
- $d \vec{\ell}=(d \lambda) \vec{r}_{A B}$,

$$
d W=\vec{F} \cdot d \vec{\ell}=d \lambda \vec{F} \cdot \vec{r}_{A B}=
$$

$$
d \lambda\left(a\left(x_{1} \lambda+x_{0}(1-\lambda)\right)\left(x_{1}-x_{0}\right)+\right.
$$

$$
b\left(y_{1} \lambda+y_{0}(1-\lambda)\left(y_{1}-y_{0}\right)\right)
$$

- $W_{A \rightarrow B}=\int_{0}^{W_{A \rightarrow B}} d W=\int_{0}^{1} d \lambda(\cdots)=$

$$
\left(\frac{1}{2} a x_{1}^{2}+\frac{1}{2} b y_{1}^{2}\right)-\left(\frac{1}{2} a x_{0}^{2}+\frac{1}{2} b y_{0}^{2}\right)
$$

Example: $\vec{F}=a x \hat{x}+b y \hat{y}$

Work done by the force as one goes from A to B through a straight line:

$W_{A \rightarrow C}=\frac{1}{2} b y_{1}^{2}-\frac{1}{2} b y_{0}^{2}$
$W_{C \rightarrow B}=\frac{1}{2} a x_{1}^{2}-\frac{1}{2} a x_{0}^{2}$

- Let $\vec{r}_{A}=x_{0} \hat{x}+y_{0} \hat{y}, \vec{r}_{B}=x_{1} \hat{x}+y_{1} \hat{y}$, $\vec{r}_{A B}=\vec{r}_{B}-\vec{r}_{A}$
- Any point on the trajectory can be written as $\vec{r}=\vec{r}_{A}+\lambda \vec{r}_{A B} ; 0 \leq \lambda \leq 1$
- $d \vec{\ell}=(d \lambda) \vec{r}_{A B}$,

$$
d W=\vec{F} \cdot d \vec{\ell}=d \lambda \vec{F} \cdot \vec{r}_{A B}=
$$

$$
d \lambda\left(a\left(x_{1} \lambda+x_{0}(1-\lambda)\right)\left(x_{1}-x_{0}\right)+\right.
$$

$$
b\left(y_{1} \lambda+y_{0}(1-\lambda)\left(y_{1}-y_{0}\right)\right)
$$

- $W_{A \rightarrow B}=\int_{0}^{W_{A \rightarrow B}} d W=\int_{0}^{1} d \lambda(\cdots)=$ $\left(\frac{1}{2} a x_{1}^{2}+\frac{1}{2} b y_{1}^{2}\right)-\left(\frac{1}{2} a x_{0}^{2}+\frac{1}{2} b y_{0}^{2}\right)$

Work done as one goes from A to B is the same in both paths. ARd main $^{\text {mond }}$ can be written as $W_{A \rightarrow B}=U\left(x_{0}, y_{0}\right)-U\left(x_{1}, y_{1}\right)$

Conservative Forces

- Definition: A force is conservative if the work done by that force as an object moves from a point P_{1} to a point P_{2} is independent of the path that the object takes.
- Friction is an example of a non-conservative force.
- Gravity (any constant force in general) is a conservative force.
- $\vec{F}=a x \hat{x}+b y \hat{y}$ is a conservative force
- If \vec{F} is conservative $W=\int_{P_{1}}^{P_{2}} \vec{F} \cdot d \vec{\ell}$ is independent of how one goes from P_{1} to P_{2}.
- To evaluate W, one can choose any path
- Define a function $U(P)$ such that $U(P)=U\left(P_{0}\right)-\int_{P_{0}}^{P_{1}} \vec{F} \cdot d \vec{\ell}$.
- $W=\Delta T$
- Suppose the object moves from P_{1} to P_{2} under the influence of the conservative force \vec{F}.
- The work done by \vec{F} is:

$$
\begin{align*}
W & =\int_{P_{1}}^{P_{2}} \vec{F} \cdot d \vec{\ell}=\int_{P_{1}}^{P_{0}} \vec{F} \cdot d \vec{\ell}+\int_{P_{0}}^{P_{2}} \vec{F} \cdot d \vec{\ell} \tag{98}\\
& =\left(U\left(P_{1}\right)-U\left(P_{0}\right)\right)+\left(U\left(P_{0}\right)-U\left(P_{2}\right)\right)=U\left(P_{1}\right)-U\left(P_{2}\right) \tag{99}
\end{align*}
$$

- $W=T_{2}-T_{1}$:

$$
\begin{aligned}
T_{2}-T_{1} & =U\left(P_{1}\right)-U\left(P_{2}\right) \\
T_{1}+U\left(P_{1}\right) & =T_{2}+U\left(P_{2}\right)
\end{aligned}
$$

Conservation of Energy

- U is called the potential energy
- $T+U$ is called the mechanical energy
- For an object moving under the influence of a conservative force only $T+U$ is always conserved.
- An object that is raised by h, has potential to do work, it has a larger potential energy
- Potential energy is NOT a property of a single object, but a property of the system as a whole.
- Newton's three laws are vector relations
- Conservation of energy is a scalar relation
- If the expression for potential energy is known, speed at any point can be determined without solving any differential equation or integrals.

Force from Potential

- Consider two nearby points separated by the vector $d \vec{r}$.
- The difference in their potential energies is:

$$
\begin{equation*}
U(\vec{r}+d \vec{r})-U(\vec{r})=-\vec{F}(\vec{r}) \cdot d \vec{r} \tag{102}
\end{equation*}
$$

- Above is valid for any $d \vec{r}$. Denote $U(\vec{r}) \equiv U(x, y, z)$ if $\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$
- If $d \vec{r}=d x \hat{x}$, then

$$
\begin{align*}
& U(x+d x, y, z)-U(x, y, z)=-F_{x}(x, y, z) d x \tag{103}\\
& \Longrightarrow F_{x}(x, y, z)=-\frac{U(x+d x, y, z)-U(x, y, z)}{(x+d x)-x} \equiv-\frac{\partial U}{\partial x} \tag{104}
\end{align*}
$$

- Similarly $F_{y}=-\frac{\partial U}{\partial y}$ and $F_{z}=-\frac{\partial U}{\partial z}$
- Hence $\vec{F}=-\left(\hat{x} \frac{\partial U}{\partial x}+\hat{y} \frac{\partial U}{\partial y}+\hat{z} \frac{\partial U}{\partial z}\right) \equiv-\vec{\nabla} U$ where $\vec{\nabla}$ is the nabla operator.

Interpreting Potential Graphs

- Consider one dimensional example $F_{X}=-\frac{d U}{d x}$, i.e. F_{x} points in the direction that $U(x)$ is decreasing
- Consider a particle with total energy E. Then $K=E-U>0$, i.e. The particle can only be at points for which $U(x)<E$.
- points x such that $U(x)=E$ are called turning points

Interpreting Potential Graphs

- At points $x= \pm x_{0}$, and $x=0$, the force acting on an object is zero: they are called equilibrium points.
- If an object is slightly displaced from $x= \pm x_{0}$, they try to move towards $\pm x_{0}$: they are called stable equilibrium points
- If an object is slightly displaced from $x=0$, they try to move away from $x=0: x=0$ is an unstable equilibrium point.

Interpreting Potential Graphs

- If an object is slightly displaced from $x= \pm x_{0}$, they try to move towards $\pm x_{0}$: they are called stable equilibrium points
- If an object is slightly displaced from $x=0$, they try to move away from
$x=0: x=0$ is an unstable equilibrium point.
- If an object is displaced slightly from an equilibrium point, it neither goes towards nor away from the equilibrium point, it is called neutral equilibrium point.

Dissipative Forces

- Dissipative forces in fact convert mechanical energy to internal energy
- The total energy of the universe is constant
- $\Delta(T+U)=W_{\text {dissipative forces }}$

Gravitational Potential Energy and Escape Velocity

- Gravitational force acting on a mass m, due to a mass M is:

$$
\begin{equation*}
\vec{F}=-G_{N} \frac{m M}{r^{2}} \hat{r} \tag{105}
\end{equation*}
$$

- The work done when m is displaced by $d \vec{\ell}$ is

$$
\begin{equation*}
d W=\vec{F} \cdot d \vec{r}=-G_{N} \frac{m M}{r^{2}} \hat{r} \cdot d \vec{\ell}=-G_{N} \frac{m M}{r^{2}} d r \tag{106}
\end{equation*}
$$

where $d r$ is the change in the radial distance, i.e. radial component if $d \vec{\ell}$.

- Potential energy difference is

$$
\begin{align*}
U(P) & -U(\infty)=-\int_{\infty}^{P}\left(-G_{N} \frac{m M}{r^{2}} d r\right) \tag{107}\\
& =-\left.G_{N} \frac{m M}{r}\right|_{r=\infty} ^{r=r_{P}}=-G_{N} \frac{m M}{r_{P}}
\end{align*}
$$

- In general $U(\infty)$ is chosen to be zero $U(\infty)=0$

Gravitational Potential Energy and Escape Velocity

Q: What should be the initial speed of an object on the surface of a planet of mass M and radius R, if it is to go until infinity?

- Let v_{0} and v_{∞} be the initial and final speeds.
- Initial mechanical energy is $E=\frac{1}{2} m v_{0}^{2}+G_{N} \frac{m M}{R}$.
- Final mechanical energy is $E=\frac{1}{2} m v_{\infty}^{2}$
- Conservation of mechanical energy:

$$
\begin{array}{r}
\frac{1}{2} m v_{0}^{2}-G_{N} \frac{m M}{R}=\frac{1}{2} m v_{\infty}^{2} \\
\Longrightarrow v_{0}^{2}= \tag{110}\\
\frac{2}{m}\left(\frac{1}{2} m v_{\infty}^{2}+G_{N} \frac{m M}{R}\right)
\end{array}
$$

- The minimum possible speed is called the escape velocity:

Potential Energy of a Spring

- The work done by a spring on an object as it moves from $x=0$ to $x=L$ was calculated as $W=-\frac{1}{2} k L^{2}$.
- The potential energy of a spring that is stretched by L is $U(L)=\frac{1}{2} k L^{2}$

