Momentum

Rewrite Newton's second law as:

$$\vec{F} = m rac{d\vec{v}}{dt} \equiv rac{d(m\vec{v})}{dt}$$

• Define the *momentum* of the particle as $\vec{p} = m\vec{v}$:

$$\vec{F} = \frac{d\vec{p}}{dt}$$

i.e. force is the rate of change of momentum

Can also be written as

$$d\vec{p} = \vec{F}dt$$

i.e., if there is force, the change in momentum in *dt* time is $\vec{F} dt$ (Note: Compare the form of this equation with $d\vec{v} = \vec{a} d\vec{t}$)

Momentum Conservation

•
$$d\vec{p} = \vec{F}dt$$

- Consider two masses m_1 and m_2 exerting forces \vec{F}_{12} and \vec{F}_{21} on each other.
- $d\vec{p}_1 = \vec{F}_{12} dt$ and $d\vec{p}_2 = \vec{F}_{21} dt$

•
$$d(\vec{p}_1 + \vec{p}_2) = (\vec{F}_{12} + \vec{F}_{21})dt$$

- Newton's third law: $\vec{F}_{12} = -\vec{F}_{21}$, i.e. $\vec{F}_{12} + \vec{F}_{21} = 0$
- $d(\vec{p}_1 + \vec{p}_2) = 0$, i.e. $\vec{p}_1 + \vec{p}_2$ is constant.
- Newton's third law is valid for any system under any condition. Hence momentum conservation is valid under any condition
- Energy conservation for a system is valid only under the absence of dissipative forces.

Physics

146 / 158

PHYS109

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Consider two masses m₁ and m₂ moving along a line with velocities v₁ and v₂ (since they are moving along a line, these are the components along the line)
- Initial total momentum of the system: $P_i = m_1 v_1 + m_2 v_2$
- Two masses collide and after collision they move with velocities v₁ and v₂.
- Final momentum of the system is $P_f = m_1 v'_1 + m_2 v'_2$
- Momentum conservation:

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

- Consider two masses m₁ and m₂ moving along a line with velocities v₁ and v₂ (since they are moving along a line, these are the components along the line)
- Initial total momentum of the system: $P_i = m_1 v_1 + m_2 v_2$ NOTE

If a quantity is conserved, it is conserved independent of how complicated the interactions are in the intermediate stages!

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

\$ V₁'

•
$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

- Unknowns: v'_1 , v'_2 : two unknowns but a single equation
- We need one more condition to determine v₁ and v₂
- **Elastic collision**: energy is conserved: $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$
- Completely inelastic collision: The two masses stick together: $v'_1 = v'_2$
- Partially inelastic collision: Coefficient of restitution:

$$C_R = \frac{\text{relative speed after collision}}{\text{relative speed before collision}} = \frac{|v_1' - v_2'|}{|v_1 - v_2|}$$
(114)

Phys109-MECHANICS

1D Collision of Two Masses

- Consider an elastic collision: $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$
- Energy conservation can be re written as

$$m_1(v_1 - v_1')(v_1 + v_1') = m_2(v_2' - v_2)(v_2' + v_2)$$

- Momentum conservation: $m_1v_1 m_1v'_1 = m_2v'_2 m_2v_2$
- Combined $v_1 + v'_1 = v_2 + v'_2$, or $v_1 v_2 = -(v'_1 v'_2)$
- Consider the special case: $v_2 = 0 \Longrightarrow v_2' = v_1 + v_1'$
- $m_1 v_1 m_1 v_1' = m_2 (v_1 + v_1')$

•
$$v'_1 = \frac{(m_1 - m_2)}{(m_1 + m_2)} v_1$$

• $V_2' = \frac{2m_1}{m_1 + m_2} V_1$

Department of Physics

PHYS109

3

149 / 158

1D Collision of Two Masses

•
$$V_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} V_1$$

•
$$v_2' = \frac{2m_1}{m_1 + m_2} v_1$$

- Special case: $m_1 = m_2$: $v'_1 = 0$ and $v'_2 = v_1$
- Special case: $m_2 \gg m_1$: $v'_1 = -v_1$ and $v_2 = 0$
- Special case: $m_1 \gg m_2$: $v'_1 = v_1$, $v_2 = 2v_1$ (discuss also in the reference frame in which $v_1 = 0$)

Department

PHYS109

Physics

Fizik

Bölümi

149 / 158

General Momentum Conservation

- System of point particles of mass *m_i*.
- Let *F*^{int}_{ij} be the force acting on mass *m_i* due to the mass *m_j* (can be gravitational attraction, EM attraction, push, pull, etc)
- Let *F*^{ext}_i be the force acting on mass *m*_i due to objects that are not part of my system.
- Newtons's second law: $\frac{d\vec{p}_i}{dt} = \sum_{i \neq i} \vec{F}_{ii}^{int} + \vec{F}_i^{ext}$
- Sum over all *i*

$$\sum_{i} \frac{d\vec{p}_{i}}{dt} = \sum_{i,j\neq i} F_{ij}^{int} + \sum_{i} \vec{F}_{i}^{ext}$$
(115)
$$\frac{d}{dt} \sum_{i} p_{i} = \vec{0} + \vec{F}_{T}^{ext}$$
(116)
$$\frac{d\vec{P}_{T}}{dt} = \vec{F}_{T}^{ext}$$

PHYS109 150 / 158

General Momentum Conservation

• Sum over all *i*

$$\sum_{i} \frac{d\vec{p}_{i}}{dt} = \sum_{i,j\neq i} F_{ij}^{int} + \sum_{i} \vec{F}_{i}^{ext}$$
(115)
$$\frac{d}{dt} \sum_{i} p_{i} = \vec{0} + \vec{F}_{T}^{ext}$$
(116)
$$\frac{d\vec{P}_{T}}{dt} = \vec{F}_{T}^{ext}$$
(117)

PHYS109

150 / 158

- Note that for any \vec{F}_{ij} , there is a $\vec{F}_{ji} = -\vec{F}_{ij}$ because of Newton's third law. Hence the first sum is zero.
- $\vec{P}_T = \sum_i \vec{p}_i$ is that total momentum and $F_T^{ext} = \sum_i \vec{F}_i^{ext}$ is the total force acting on the system

$$\vec{F}_T^{ext} = \frac{d\vec{P}_T}{dt}$$

- Newton's second law is also valid for extended objects if the momentum is taken as the total momentum of the system, and the force is taken as the total force acting on the system.
- Define \vec{v}_{CM} as $\vec{P}_T = M \vec{v}_{CM}$ where $M = \sum_i m_i$ and

$$\vec{v}_{CM} = \frac{1}{M} \sum_{i} \vec{p}_{i} = \frac{1}{M} \sum_{i} m_{i} \vec{v}_{i}$$
 (118)

$$=\frac{1}{M}\sum_{i}m_{i}\frac{d\vec{r}_{i}}{dt}=\frac{d}{dt}\left(\frac{1}{M}\sum_{i}m_{i}\vec{r}_{i}\right)\equiv\frac{d\vec{r}_{CM}}{dt}$$
(119)

PHYS109

151 / 158

- $\vec{r}_{CM} = \frac{1}{M} \sum_{i} m_i \vec{r}_i$ is the position of the *center of mass* of the system.
- A system of particles behaves like a point mass of mass \vec{r}_{CM} with regards to translational motion.

Altuğ Özpineci (METU)

Phys109-MECHANICS

Ninth Week

Collisions in 3D

- Initial state: m_B is at rest, m_A moves with velocity v
- Final state: the velocities of m_A and m_B are \vec{v}_A and \vec{v}_B .
- Initial momentum:

$$\vec{P}_i = m_A \vec{v} = m_A v \hat{x}$$
 (120)

• Final momentum:

$$\vec{P}_{f} = m_{A}\vec{v}_{A} + m_{B}\vec{v}_{B}$$

$$= (m_{A}v_{A}\cos\phi + m_{B}v_{B}\cos\theta)\hat{x}$$

$$+ (m_{A}v_{A}\sin\phi + m_{B}v_{B}\sin\theta)\hat{y}$$
Department Physics Field Bolimi

PHYS109 152 / 15

Collisions in 3D

Initial momentum:

$$\vec{P}_i = m_A \vec{v} = m_A v \hat{x}$$
 (120)

Department

PHYS109

Physics

Fizik Bölümü

152 / 158

• Final momentum:

$$\vec{P}_f = m_A \vec{v}_A + m_B \vec{v}_B$$

= $(m_A v_A \cos \phi + m_B v_B \cos \theta) \hat{x}$
+ $(m_A v_A \sin \phi + m_B v_B \sin \theta) \hat{y}$

• Unknowns v_A , v_B , ϕ , θ are related through:

$$m_a v = m_a v_A \cos \phi + m_B v_B \cos \theta$$
(121)
$$0 = m_A v_A \sin \phi + m_B v_B \sin \theta$$
(122)

We need two more equations

Altuğ Özpineci (METU)

Phys109-MECHANICS

Ninth Week

Collisions in 3D

• In elastic collisions:

$$\frac{1}{2}m_A v^2 = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2$$

- One more equation involving *v_A* and *v_B*.
- Still we need to measure one of the unknowns to determine the other three
- In completely inelastic collisions $\vec{v}_A = \vec{v}_B$, hence $v_A = v_B$ and $\theta = \phi$

21)

Rölümü

152 / 158

Departmen

PHYS109

Physic

• Unknowns v_A , v_B , ϕ , θ are related through:

$$m_a v = m_a v_A \cos \phi + m_B v_B \cos \theta \tag{120}$$

$$0 = m_A v_A \sin \phi + m_B v_B \sin \theta$$

We need two more equations

Altuğ Özpineci (METU)

System of Two Masses

• In terms of \vec{v}_{CM} and $\vec{v} = \vec{v}_1 - \vec{v}_2$, $\vec{v}_1 = \vec{v}_{CM} + \frac{m_2}{m_1 + m_2}\vec{v}$ and $\vec{v}_2 = \vec{v}_{CM} - \frac{m_1}{m_1 + m_2}\vec{v}$ • Total kinetic energy:

$$\begin{split} \mathcal{K} &= \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \\ &= \frac{1}{2} m_1 \left(\vec{v}_{CM} + \frac{m_2}{m_1 + m_2} \vec{v} \right)^2 + \frac{1}{2} m_2 \left(\vec{v}_{CM} - \frac{m_1}{m_1 + m_2} \vec{v} \right)^2 \\ &= \frac{1}{2} (m_1 + m_2) v_{CM}^2 + \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} v^2 \\ &\equiv \frac{1}{2} M v_{CM}^2 + \frac{1}{2} \mu v^2 \end{split}$$
(122)

- The first term is the kinetic energy of the whole system
- The second term is the internal energy of the whole system
- In elastic collisions, only the direction of \vec{v} can change

Altuğ Özpineci (METU)

PHYS109 153 / 158