Outline of Topics Covered

Will be Redone for Rotational Motion

- Kinematics-how to describe the state (position and velocity) of the system
- Dynamics-why the state of the system changes (acceleration)
- Work done by force
- Conserved quantities
- Energy Conservation
- Momentum Conservation

Rotational Variables

- Rigid body: The distances between parts of the object are fixed.
- General motion of a rigid body: translation+ rotation
- Pure rotation around a fixed axis: all the points on the object rotate around a given axis-axis of rotation
- The orientation of an object can be completely specified by specifying the position of a determined point.

Rotation Angle(Kinematics)

- In radians $\theta=\frac{\ell}{R}$, or $\ell=\theta R(\theta=$ theta)
- $\Delta \theta$: change in θ, angular displacement
- Average angular velocity: $\bar{\omega}=\frac{\Delta \theta}{\Delta t}(\omega$ = omega)
- Average angular acceleration: $\bar{\alpha}=\frac{\Delta \omega}{\Delta t}$ ($\alpha=$ alpha)
- Instantaneous angular velocity: $\omega=\frac{d \theta}{d t}$
- Instantaneous angular acceleration: $\alpha=\frac{d \omega}{d t}$

Rotation Angle(Kinematics)

- The speed of point P is

$$
v=\frac{d \ell}{d t}=\frac{d(R \theta)}{d t}=R \frac{d \theta}{d t}=R \omega
$$

- The further the point is from the axis of rotation, the faster it moves
- $a_{\text {tan }}=\frac{d v}{d t}=R \alpha$ (note that these are not vectors)
- frequency: How many full rotations the object completes in one second: $f=\frac{\omega}{2 \pi} \Longrightarrow w=2 \pi f$
- Period: How long one full rotation takes: $T=\frac{2 \pi}{\omega}=\frac{1}{f}$

Rotation Angle(Kinematics)

- Angular velocity has a magnitude and a direction (the axis of rotation) hence it is a vector.
- The direction of angular velocity vector $\vec{\omega}$ can be found by the right hand rule.
- Angular acceleration vector $\vec{\alpha}=\frac{d \vec{\omega}}{d t}$
- $\vec{v}=\vec{\omega} \times \vec{r}$ (see vecior producis)
- $\vec{a}_{\text {tan }}=\vec{\alpha} \times \vec{r}$

Rotation Angle(Kinematics)

For variable angular acceleration

$$
\begin{align*}
\omega(t) & =\omega_{0}+\int_{0}^{t} \alpha\left(t^{\prime}\right) d t^{\prime} \tag{125}\\
& \Longleftrightarrow \vec{v}(t)=\vec{v}_{0}+\int_{0}^{t} \vec{a}\left(t^{\prime}\right) d t^{\prime} \tag{126}\\
\theta(t) & =\theta_{0}+\int_{0}^{t} \omega\left(t^{\prime}\right) d t^{\prime} \tag{127}\\
& \Longleftrightarrow \vec{r}(t)=\vec{r}_{0}+\int_{0}^{t} \vec{v}\left(t^{\prime}\right) d t^{\prime} \tag{128}
\end{align*}
$$

For constant angular acceleration:

$$
\begin{aligned}
& \omega(t)=\omega_{0}+\alpha t
\end{aligned}
$$

Torque(Dynamics)

- If a force \vec{F} is applied at the point P, such that it makes an angle γ with the line connecting P to O, the torque is defined as: $\tau=F R \sin \gamma=|\vec{F} \times \vec{R}|$

Torque on Point Mass

- $F_{\tan }=F \sin \theta$
- $m a_{\text {tan }}=F_{\text {tan }} \Longrightarrow m R \alpha=F_{\text {tan }}$
- $\tau=F_{t a n} R=m R^{2} \alpha \equiv I \alpha$
- $I=m R^{2}$ is called the moment of inertia.
- Note that the net force acting on the mass m also contain the force due to tension. But this force does not have a tangential component, hence does not contribute to the tangential acceleration, and hence to angular acceleration.
- $\vec{\tau}=\vec{r} \times \vec{F}$ has the same magnitude as $l \vec{\alpha}$, and is in the same direction.
- Hence $\vec{\tau}=l \vec{\alpha}$

Torque on Continuous Mass

- For a system formed by m_{i}, the torque acting on m_{i} is

$$
\vec{\tau}_{i}=\vec{R}_{i} \times\left(\sum_{j \neq i} \vec{F}_{i j}+\vec{F}_{i}^{e x t}\right)=m_{i}^{2} R_{i} \vec{\alpha}
$$

(Note that for a right body α is the same for all parts of the system)

- Total torque acting on the system

$$
\vec{\tau} \equiv \sum_{i} \vec{\tau}_{i}=\sum_{i} m_{i} R_{i}^{2} \vec{\alpha}=\left(\sum_{i} m_{i} R_{i}^{2}\right) \vec{\alpha} \equiv l \vec{\alpha}
$$

- $I=\sum_{i} m_{i} R_{i}^{2}$

Example: Thin Rod Rotating Around One End

- The net torque on the rod around the fixed axes:

$$
\begin{equation*}
\vec{\tau}=\sum_{i} \vec{r}_{i} \times\left(m_{i} \vec{g}\right)=\left(\sum_{i} m_{i} \vec{r}_{i}\right) \times \vec{g}=\left(M \vec{r}_{C M}\right) \times \vec{g}=\vec{r}_{C M} \times \vec{w} \tag{125}
\end{equation*}
$$

Hence the center of gravity for an object in uniform gravitational field is its CM.

- $\tau=\frac{M g L}{2}$
- $\alpha=\frac{\tau}{T}=\frac{\frac{M g L}{2}}{\frac{1}{3} M L^{2}}=\frac{3}{2} \frac{g}{L}$

- $a_{C M}=\frac{F^{e x t}}{M}$. Which other force is acting on the rod?

