Rotational Kinetic Energy

- Assume that a rigid body is rotating around a fixed axis with angular velocity ω.
- m_{i} located at a distance R_{i} from the axis will have a speed ωR_{i}.
- The kinetic energy of m_{i} is $K=\frac{1}{2} m_{i}\left(R_{i} \omega\right)^{2}=\frac{1}{2} m_{i} R_{i}^{2} \omega^{2}$.
- Summing the kinetic energy of all the masses, the kinetic energy of the rigid body is:

$$
K=\sum_{i} \frac{1}{2}\left(m_{i} R_{i}^{2}\right) \omega^{2} \equiv \frac{1}{2} I \omega^{2}
$$

Kinetic Energy of A Rotating Object That also Has Translational Motion

- Let $\vec{r}_{C M}$ be the position of the CM.
- Let \vec{r}_{i} and \vec{R}_{i} be the position of mass m_{i} in the rigid body relative to a fixed coordinate axis and relative to the CM respectively: $\vec{r}_{i}=\vec{r}_{C M}+\vec{R}_{i}$
- $\vec{v}_{i}=\vec{v}_{C M}+\vec{V}_{i}$, where \vec{V}_{i} is the velocity relative to the CM.
- Total Kinetic Energy of the rigid body is:

$$
\begin{aligned}
K & =\sum_{i} \frac{1}{2} m_{i} \vec{v}_{i}^{2}=\sum_{i} \frac{1}{2} m_{i}\left(\vec{v}_{C M}^{2}+2 \vec{v}_{C M} \cdot \vec{V}_{i}+\vec{V}_{i}^{2}\right) \\
& =\frac{1}{2}\left(\sum_{i} m_{i}\right) V_{C M}^{2}+\frac{1}{2} \sum_{i} m_{i} \vec{V}_{i}^{2}+\vec{v}_{C M} \cdot \sum_{i} m_{i} \vec{V}_{i}
\end{aligned}
$$

- The first terms is the translational kinetic energy
- The second term is the rotational kinetic energy around the pisics $\mathrm{OM}^{\text {bibie }}$

Kinetic Energy of A Rotating Object That also Has Translational Motion

- Total Kinetic Energy of the rigid body is:

$$
\begin{aligned}
K & =\sum_{i} \frac{1}{2} m_{i} \vec{v}_{i}^{2}=\sum_{i} \frac{1}{2} m_{i}\left(\vec{v}_{C M}^{2}+2 \vec{v}_{C M} \cdot \vec{V}_{i}+\vec{V}_{i}^{2}\right) \\
& =\frac{1}{2}\left(\sum_{i} m_{i}\right) V_{C M}^{2}+\frac{1}{2} \sum_{i} m_{i} \vec{V}_{i}^{2}+\vec{v}_{C M} \cdot \sum_{i} m_{i} \vec{V}_{i}
\end{aligned}
$$

- The first terms is the translational kinetic energy
- The second term is the rotational kinetic energy around the CM.
- The third term is zero since $\sum_{i} m_{i} \vec{V}_{i}$ is the total momentum relative the the CM which is zero.
- $K=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2} l \omega^{2}$
- Note that this simple form is valid only if one considersparfetation axis passing through the CM.

Work Done On a Rotating Object

- $W=\int_{P_{i}}^{P_{f}} \vec{F} \cdot d \vec{\ell}$
- $d \ell=R d \theta$
- $\vec{F} \cdot d \vec{\ell}=F R d \theta \cos \gamma$, where γ is the angle between \vec{F} and $d \vec{\ell}$
- $F \cos \gamma$ is the component of \vec{F} along $d \vec{\ell}$
- $d \ell$ is perpendicular to \vec{R}.
- Hence $F \cos \gamma=F_{\perp}$

$$
W=\int_{\theta_{i}}^{\theta_{f}} F_{\perp} R d \theta=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

- The power is:

$$
P=\frac{d W}{d t}=\tau \frac{d \theta}{d t}=\tau \omega
$$

Work Energy Principle For Rotations

$$
\begin{aligned}
W & =\int_{\theta_{i}}^{\theta_{f}} \tau d \theta=\int_{t_{i}}^{t_{f}} I \frac{d \omega}{d t} \frac{d \theta}{d t} d t \\
& =\int_{t_{i}}^{t_{f}} \frac{d \omega}{d t} I \omega d t=\int_{t_{i}}^{t_{f}} \frac{d}{d t}\left(\frac{1}{2} I \omega^{2}\right) d t \\
& =\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}
\end{aligned}
$$

Concept Questions

Object A sits at the outer edge (rim) of a merry-go-round, and object B sits halfway between the rim and the axis of rotation. The merry-go-round makes a complete revolution once every thirty seconds. The magnitude of the angular velocity of Object B is
A half the angular speed of Object A.
B the same as the angular speed of Object A.
C twice the angular speed of Object A.
D impossible to determine

Concept Questions

Which has the smallest I about its center?
A Ring (mass m, radius R)
B Disc (mass m, radius R)
C Sphere (mass m, radius R)
D All have the same I.

Concept Questions

In this problem ignore any friction/drag. Suppose that you release (from rest) an object from a very high building. Where does it fall?
A straight down
B a bit to the north
C a bit to the south
D a bit to the east
E a bit to the west

QUIZ 6

A mass $m_{1}=2 \mathrm{~kg}$ that has a velocity $\vec{v}_{1}=(3 \mathrm{~m} / \mathrm{s}) \hat{x}+(4 \mathrm{~m} / \mathrm{s}) \hat{y}$ collides with a mass $m_{2}=3 \mathrm{~kg}$ that moves with a velocity $\vec{v}_{2}=(2 \mathrm{~m} / \mathrm{s}) \hat{y}$. The two masses stick together.
(1) What is their common velocity after the collision?
(2) How much kinetic energy is converted into internal energy in this collision?

