Example-Calculating Moments of Inertia

Moment of Inertia Of a Rigid Rod Rotating Around CM

$$
\begin{aligned}
I & =\sum_{i} m_{i} R_{i}^{2}=\sum_{i} \frac{M}{L} d x\left(\frac{L}{2}-x\right)^{2} \\
& =\frac{M}{L} \int_{0}^{L}\left(\frac{L}{2}-x\right)^{2}=\left.\frac{M}{3 L}\left(\frac{L}{2}-x\right)^{3}\right|_{x=0} ^{x=L} \\
& =\frac{M}{3 L}\left(\frac{L}{2}\right)^{3}-\frac{M}{3 L}\left(-\frac{L}{2}\right)^{3}=\frac{M}{12} L^{2}
\end{aligned}
$$

Parallel Axis Theorem

Proof

- Let $I_{C M}$ be the moment of inertia around an axes going through the CM.
- Choose z axis to be along the this axes.
- Choose a second axes that goes through the point $\left(x_{0}, y_{0}\right)$.
- The distance of point with coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ from the second axis is $R^{2}=\left(x_{i}-x_{0}\right)^{2}+\left(y_{i}-y_{0}\right)^{2}$
- The moment of inertial with respect to the second axis is

$$
\begin{align*}
& \quad I=\sum_{i} m_{i}\left[\left(x_{I}-x_{0}\right)^{2}+\left(y_{i}-y_{0}\right)^{2}\right] \tag{125}\\
& =\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)+\sum_{i} m_{i}\left(x_{0}^{2}+y_{0}^{2}\right)-2 \sum_{i} m_{i}\left(x_{i} x_{0}+y_{i} y_{0}\right) \tag{126}\\
& \quad=I_{C M}+M d^{2} \\
& \text { where } d^{2}=x_{0}^{2}+y_{0}^{2} \text { and } \sum_{i} m_{i} x_{i}=\sum_{i} m_{i} y_{i}=0
\end{align*}
$$

Parallel Axis Theorem

Example

Moment of inertia of a thin rod around one end:

$$
I=I_{C M}+M\left(\frac{L}{2}\right)^{2}=\frac{1}{12} M L^{2}+\frac{1}{4} M L^{2}=\frac{1}{3} M L^{2}
$$

Example: Thin Rod Rotating Around One End

- The net torque on the rod around the fixed axes:

$$
\begin{equation*}
\vec{\tau}=\sum_{i} \vec{r}_{i} \times\left(m_{i} \vec{g}\right)=\left(\sum_{i} m_{i} \vec{r}_{i}\right) \times \vec{g}=\left(M \vec{r}_{C M}\right) \times \vec{g}=\vec{r}_{C M} \times \vec{w} \tag{125}
\end{equation*}
$$

Hence the center of gravity for an object in uniform gravitational field is its CM.

- $\tau=\frac{M g L}{2}$
- $\alpha=\frac{\tau}{T}=\frac{\frac{M g L}{2}}{\frac{1}{3} M L^{2}}=\frac{3}{2} \frac{g}{L}$

- $a_{C M}=\frac{F^{e x t}}{M}$. Which other force is acting on the rod?

Perpendicular Axis Theorem

Proof

- Consider a very thin object in the $x y$ plane.
- For any point in the object $z_{i} \simeq 0$
- $I_{x}=\sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \simeq \sum_{i} m_{i} y_{i}^{2}$
- Similarly $I_{y}=\sum_{i} m_{i}\left(x_{i}^{2}+z_{i}^{2}\right) \simeq \sum_{i} m_{i} x_{i}^{2}$
- Then $I_{z}=\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)=\sum_{i} m_{i} x_{i}^{2}+\sum_{i} m_{i} y_{i}^{2}=I_{x}+I_{y}$

Perpendicular Axis Theorem

Example

- The moment of inertia of a loop of mass M and radius R for rotations around an axis that is perpendicular to its plane and going through its CM: $I_{z}=\sum_{i} m_{i} R^{2}=M R^{2}$
- Its moment of inertia around any axis that goes through its CM and is in its plane:
- If x and y axes are the two axes in the plane of the loop, due to symmetry $I_{x}=I_{y}$
- By perpendicular axis theorem: $I_{z}=I_{x}+I_{y}=2 I_{x}$
- Hence $I_{x}=\frac{1}{2} M R^{2}$.
- Moment of inertia for rotation around an axis that goes through the edge and is in the plane of the loop:

$$
I^{\prime}=I_{C M}+M d^{2}=\frac{1}{2} M R^{2}+M R^{2}=\frac{3}{2} M R^{2}
$$

Heavy Pulley

- Since the pulley has a mass, the tensions at each end of the pulley will be different.

- Let x axis be out of the screen

Heavy Pulley

- The net forces acting on mass m_{1} and m_{2} are:

$$
\begin{align*}
& \vec{F}_{1 T}=\left(T_{1}-m_{1} g\right) \hat{z} \tag{126}\\
& \vec{F}_{2 T}=\left(T_{2}-m_{2} g\right) \hat{z} \tag{127}
\end{align*}
$$

Heavy Pulley

- The torque acting on the pulley is $\vec{\tau}=R\left(T_{1}-T_{2}\right) \hat{x}$

Heavy Pulley

- Let $\vec{a}_{1}=a_{i} \hat{z}$ and $\vec{\alpha}=\alpha \vec{x}$. Then

$$
\begin{align*}
T_{1}-m_{1} g & =m_{1} a_{1} \tag{126}\\
T_{2}-m_{2} g & =m_{2} a_{2} \tag{127}\\
R\left(T_{1}-T_{2}\right) & =l_{\alpha} \tag{128}
\end{align*}
$$

- Unkowns: $T_{1}, T_{2}, a_{1}, a_{2}$, and $\alpha: 5$ unknowns
- The remaining two eqns are:

$$
\begin{align*}
a_{1} & =-a_{2} \tag{129}\\
\alpha R & =-a_{1}
\end{align*}
$$

(130)

Heavy Pulley

- The solutions of these equations are:

$$
a_{1}=-a_{2}=\frac{\left(m_{2}-m_{1}\right) R^{2}}{l+\left(m_{1}+m_{2}\right) R^{2}} g
$$

(126)

$$
\begin{align*}
\alpha & =\frac{\left(m_{1}-m_{2}\right) R}{I+\left(m_{1}+m_{2}\right) R^{2}} g \tag{127}\\
T_{1} & =\frac{m_{1} g\left(I+2 m_{2} R^{2}\right)}{I+\left(m_{1}+m_{2}\right) R^{2}} \tag{128}\\
T_{2} & =\frac{m_{2} g\left(I+2 m_{1} R^{2}\right)}{I+\left(m_{1}+m_{2}\right) R^{2}} \tag{129}
\end{align*}
$$

