
MATH 219
Fall 2020

Lecture 5

Lecture notes by Özgür Kişisel

Content: Exact equations and integrating factors (section 2.6).

Suggested Problems: (Boyce, Di Prima, 9th edition)

§2.6: 3, 5, 9, 10, 13, 18, 21, 24, 30, 32

1 Exact equations

Let us consider the case of an arbitrary first order ODE once again. Say that our
independent variable is x rather than t. Suppose for a moment that we found the
solutions of the equation and that they can be written in the implicit form

F (x, y) = c.

by leaving the constant c alone. Of course, when c changes, the solution curve will
change. We can easily write dy/dx in terms of x: Take the derivative of both sides
with respect to x. By the chain rule,

∂F

∂x
+
∂F

∂y

dy

dx
= 0

dy

dx
= −∂F/∂x

∂F/∂y

The question is whether we can reverse this process. Namely, given the ODE, can
we recover such a function F (x, y)? One important remark at this point is that,
even if we could, given the ODE we just know the ratio of ∂F/∂x to ∂F/∂y, but
F and the values of the partial derivatives themselves are not uniquely determined
at all. In some favourable cases, the functions appearing in the particular way we
write the ODE will a priori be equal to the derivatives of a certain function F . To
better understand this, let us write the ODE in a more symmetric form:

M(x, y) +N(x, y)
dy

dx
= 0.
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An equivalent way of writing this equation is

M(x, y)dx+N(x, y)dy = 0.

Derivatives with respect to x are suppressed in this notation. Instead of d
dx

we write
d etc. 1 With this notation, we have

d(F (x, y)) =
∂F

∂x
dx+

∂F

∂y
dy.

Definition 1.1 The equation M(x, y)dx + N(x, y)dy = 0 is called exact on a do-
main D if there exists a differentiable function F (x, y) on D such that the left hand
side of the equation can be written as d(F (x, y)) on D. A function F (x, y) satisfying
this condition is called a potential for this equation.

By the chain rule, the condition on F (x, y) is equivalent to the pair of equations

∂F

∂x
= M,

∂F

∂y
= N

We emphasize that the potential F (x, y) must be defined as a single valued function
on the whole domain D.

Example 1.1 The equation ydx+(x+2y)dy = 0 is exact on R2. Indeed, if F (x, y) =
xy + y2 then

d(F (x, y)) = d(xy + y2)

= ydx+ (x+ 2y)dy

Remark 1.1 Recall from multivariable calculus that a vector field < M(x, y), N(x, y) >
is called conservative if it can be written in the form ∇F for some function F (x, y).
It is clear that the equation Mdx + Ndy = 0 is exact if and only if the vector field
< M,N > is conservative.

1From a more advanced perspective, this is an equality of differential 1-forms. We will not
pursue this viewpoint here
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If the equation Mdx+Ndy = 0 is exact with potential F , then it can be rewritten
as dF = 0. Consequently, the equations F (x, y) = c for arbitrary values of c give us
all solutions of the ODE in an implicit form.

Example 1.2 Solve the initial value problem ydx+ (x+ 2y)dy = 0, y(1) = 5.

Solution: We saw above that the equation is exact with F (x, y) = xy + y2 a po-
tential. Therefore the solutions of the equation are xy + y2 = c. Using the intial
condition, we find that c = 1× 5 + 52 = 30. Hence the solution is xy + y2 = 30 (in
implicit form).

Suppose that M(x, y) and N(x, y) are themselves continuously differentiable on a
common domain D. As in the case of conservative vector fields, a necessary condition
for the existence of a potential function is

∂M

∂y
=

∂F

∂x∂y
=

∂F

∂y∂x
=
∂N

∂x

This condition is not always sufficient for the existence of a potential F . However, if
the domain is simply connected, then it is. A simply connected domain, intuitively,
is a domain with no interior holes. An example of a simply connected domain is a
rectangle. We will formulate and use the result in this particular case.

Theorem 1.1 (Test for exactness) Suppose that M,N, ∂M/∂y and ∂N/∂x are con-
tinuous on a rectangle R. Then Mdx + Ndy = 0 is exact if and only if ∂M/∂y =
∂N/∂x at each point of R.

Proof: Fix x0. The functions F (x, y) satisfying the equation ∂F/∂x = M can be
found by integrating M along a line segment from (x0, y) to (x, y), since each such
line segment remains in the rectangle R:

F (x, y) =

∫ (x,y)

(x0,y)

M(s, y)ds

The result is any antiderivative of M with respect to x plus a function of y to be
determined. Namely, it is of the form F (x, y) = R(x, y) + h(y) where ∂R/∂x = M .
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The question is whether or not we can always choose h(y) so that the equation
∂F/∂y = N is also satisfied. We need

∂F

∂y
=

∂R

∂y
+ h′(y) = N(x, y)

h′(y) = N(x, y)− ∂R

∂y

The last equation has a solution for h′(y) (and consequently for h(y)) if and only if
its right hand side is independent of x. In order to test whether this is true or not,
let us look at its partial derivative with respect to x:

∂

∂x

(
N(x, y)− ∂R

∂y

)
=

∂N

∂x
− ∂2R

∂x∂y

=
∂N

∂x
− ∂2R

∂y∂x

=
∂N

∂x
− ∂M

∂y
= 0.

Therefore we can solve for h(y), and the equation is exact. This completes the proof.
�

Example 1.3 Find the value of the constant a for which the ODE

3eydx+ (2y + axey)dy = 0

is exact. Solve the equation for this value of a.

Solution: We have M(x, y) = 3ey and N(x, y) = 2y + axey. Since

∂M

∂y
= 3ey

∂N

∂x
= aey

the equality holds if and only if a = 3. Since M,N and their partial derivatives are
all continuous on R2, we can apply the theorem and conclude that the ODE is exact
for a = 3. Now,

∂F

∂x
= 3ey

F (x, y) = 3xey + h(y)

∂F

∂y
= 3xey + h′(y) = 2y + 3xey

h′(y) = 2y.
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Therefore h(y) = y2 is a solution and F (x, y) = 3xey + y2 is a potential. The
solutions of the ODE are

3xey + y2 = c

where c ∈ R is a constant. �

Example 1.4 Solve the initial value problem(
2xy

x2 + 1
− 2x

)
dx− (2− ln(x2 + 1))dy = 0, y(5) = 0.

Determine the largest interval on which the solution is valid.

Solution: Here, M(x, y) =
2xy

x2 + 1
− 2x and N(x, y) = −2+ln(x2+1). We compute

∂M

∂y
=

2x

x2 + 1
=
∂N

∂x

Both M,N and their partial derivatives are continuous on R2 (which can be viewed
as an infinite rectangle). Therefore, by the test for exactness, the equation is exact.
Let us find a potential.

∂F

∂x
=

2xy

x2 + 1
− 2x

F (x, y) = y ln(x2 + 1)− x2 + h(y)

∂F

∂y
= ln(x2 + 1) + h′(y) = −2 + ln(x2 + 1)

h′(y) = −2

h(y) = −2y.

We deduce that F (x, y) = y ln(x2 + 1)− x2 − 2y is a potential. All solutions of the
ODE are y ln(x2 + 1) − x2 − 2y = c. Using the initial condition y(5) = 0, we find
that 0 ln(52 + 1)− 52 − 2× 0 = c, therefore c = −25. So,

y ln(x2 + 1)− x2 − 2y = −25

y(ln(x2 + 1)− 2) = x2 − 25

y =
x2 − 25

ln(x2 + 1)− 2
.

This function is defined if and only if ln(x2 + 1) − 2 6= 0, namely for x2 + 1 6= e2.
The interval of definition, which must be a connected interval, could then be either
of (−∞,−

√
e2 − 1), (−

√
e2 − 1,

√
e2 − 1) or (

√
e2 − 1,∞) but since the initial point

x = 5 belongs to the last one, the answer is (
√
e2 − 1,∞).
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2 Integrating Factors

Recall from the lecture on first order linear equations that an ODE of the form
y′ + p(t)y = q(t) can be solved by multiplying the equation by an integrating factor
µ(t). In this case, the equation for µ(t) turned out to be easy to solve and we even
got a formula µ(t) = exp(

∫
p(t)dt).

Let us now suppose that we have an ODE of the form M(x, y)dx + N(x, y)dy = 0.
If the equation is exact, then we know what to do. If it is not exact, we may try
to find an integrating factor µ(x, y) such that, after multiplication with µ, the new
ODE

µMdx+ µNdy = 0

is exact. Let us assume that all of these functions and their partial derivatives are
continuous on a rectangle R, so that we can use the test for exactness. Then the
new equation is exact if and only if

∂(µM)

∂y
=

∂(µN)

∂x
∂µ

∂y
M + µ

∂M

∂y
=

∂µ

∂x
N + µ

∂N

∂x
.

The problem that we encounter here is that this new differential equation for µ is
terribly difficult to solve. It is not even an ODE, it is a PDE. Therefore, finding
an integrating factor in this very general setting is a hopelessly difficult task. Only
when there is some additional information that tells us something about the form
of the integrating factor, this method could be useful.

Example 2.1 Show that µ(x, y) = (x2 + y2)−1 is an integrating factor for the ODE

(3x2 + x+ 3y2)dx+ (7x2 + y + 7y2)dy = 0

and use it to find all solutions of this ODE.

Solution: The original equation is not exact (please check this). If we multiply the
ODE throughout by µ(x, y), we get

(
3 +

x

x2 + y2

)
dx+

(
7 +

y

x2 + y2

)
dy = 0.
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The functions 3 +
x

x2 + y2
and 7 +

y

x2 + y2
are defined on R2 − {(0, 0)}. Since this

set is not a rectangle (in fact, it is not a simply connected domain), we cannot use
the test for exactness here. We should directly show that a potential function exists:

∂F

∂x
= 3 +

x

x2 + y2

F (x, y) = 3x+
1

2
ln(x2 + y2) + h(y)

∂F

∂y
=

y

x2 + y2
+ h′(y) = 7 +

y

x2 + y2

h′(y) = 7

h(y) = 7y.

Therefore F (x, y) = 3x+ 7y +
1

2
ln(x2 + y2) is a potential. Existence of a potential

implies that µ(x, y) is indeed an integrating factor. The solutions of the ODE are

3x+ 7y +
1

2
ln(x2 + y2) = c

where c ∈ R is a constant.
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