
MATH 219
Fall 2020

Lecture 10

Lecture notes by Özgür Kişisel

Content: Constant coefficient systems. Complex eigenvalues.

Suggested Problems: (Boyce, Di Prima, 9th edition)

§7.6: 2a, 6a, 9, 14, 26

1 Complex Eigenvalues

Definition 1.1 Let A be an n × n matrix. The polynomial det(A − λI) (which is
of degree n in λ) is called the characteristic polynomial of the matrix A.

Roots of the characteristic polynomial are eigenvalues of A. Even if the matrix A
has real entries, the characteristic polynomial may have non-real eigenvalues, hence
we may have to work with complex numbers.

Example 1.1 Let A =

[
0 −1
1 0

]
. Then

det(A− λI) =

∣∣∣∣−λ −1
1 −λ

∣∣∣∣ = λ2 + 1.

Therefore the eigenvalues of A are +i and −i.

Eigenvalues and eigenvectors of a real matrix A always appear in complex conjugate
pairs:

Lemma 1.1 Say λ = a+ ib is an eigenvalue of a real matrix A with corresponding
eigenvector v. Then λ = a − ib is also an eigenvalue of A with corresponding
eigenvector v.
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Proof: We have Av = λv. Take complex conjugates of both sides.

Av = Av = Av = λv = λv,

hence the claim follows. �

Now, let us consider the system
dx

dt
= Ax where A is a constant matrix with complex

eigenvalues. If λ = a+ ib is an eigenvalue with eigenvector v then we can still write
down a complex valued solution x = eλtv since our previous analysis about these
solutions in the previous lecture is essentially unchanged, regardless of whether the
eigenvalue is real or complex valued. However, we are usually interested in real
valued solutions. So, a way to extract real valued solutions by using the complex
valued solutions would be very helpful at this point. In order to do this, we should
first discuss the meaning of eλt = eateibt.

Theorem 1.1 (Euler’s identity) Let b be a real number. Then

eibt = cos(bt) + i sin(bt).

Sketch of Proof: (Assuming some facts which say that the theorems about Taylor
series from calculus also hold for complex numbers.) Compute the Taylor series for
eibt. Since both sides of the equation are analytic functions, equality of their Taylor
series will imply the equality of the functions themselves:

eibt =
∞∑
n=0

(ibt)n

n!

=
∞∑
k=0

(ibt)k

(2k)!
+
∞∑
k=0

(ibt)2k+1

(2k + 1)!

=
∞∑
k=0

(−1)k
(bt)k

(2k)!
+ i

∞∑
k=0

(−1)k(bt)2k+1

(2k + 1)!

= cos(bt) + i sin(bt)

This finishes the proof. �

Therefore, we have a method for finding complex solutions of a constant coefficient
system and we can express the result in terms of familiar trigonometric functions.
How can we use these to find the real solutions of the system? After all, the system
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that we started with is real, therefore by the basic theory, it must have real solutions.
Actually, if the system is n × n, then it must have a fundamental set of n linearly
independent real solutions. For any real life application, the real solutions will be
the relevant ones, therefore this passage from complex solutions to real solutions
will be necessary at some point. Now if λ = a+ ib is an eigenvalue of A with b 6= 0,
and v a corresponding (complex) eigenvector, then Av = λv. We have

Av = λv, eλt = eate−ibt = eλt

therefore x(1) = eλtv = eλtv = x(2). If x(1) = y(1) + iy(2) with y(1) and y(2) real,
then x(2) = y(1) − iy(2). Therefore,

y(1) =
1

2
x(1) +

1

2
x(2), y(2) =

1

2i
x(1) − 1

2i
x(2).

By the principle of superposition, since x(1) and x(2) are solutions of the system, y(1)

and y(2) which are their linear combinations must also be solutions of the system.
Therefore we produced two real solutions corresponding to the two eigenvalues λ1 =
a+ ib and λ2 = a− ib. One can check that if x(1) and x(2) are linearly independent
to start with, then y(1) and y(2) obtained in this way are also linearly independent.
Therefore, by applying this exchange process to every conjugate pair of eigenvalues,
we will obtain as many linearly independent real solutions as linearly independent
complex solutions.

There is a slight shortcut for obtaining y(1) and y(2) above from x(1) only. Since x(2)

is the complex conjugate of x(1), it essentially carries the same information with x(1).
A quick check shows us that y(1) is the real part of x(1) and y(2) is the imaginary
part of x(1).

Example 1.2 Solve the system

x′1 = −4x1 + 10x2

x′2 = −5x1 + 6x2

Solution: The coefficient matrix is A =

[
−4 10
−5 6

]
. Then

det(A− λI) =

∣∣∣∣−4− λ 10
−5 6− λ

∣∣∣∣
= (−4− λ)(6− λ) + 50

= λ2 − 2λ+ 26

= (λ− 1)2 + 25
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The eigenvalues of A are λ1,2 = 1∓ 5i. Let us find the eigenvectors for λ1 = 1 + 5i:[
−5− 5i 10 | 0
−5 5− 5i | 0

]
R1 ↔ R2−−−−−−→

[
−5 5− 5i | 0

−5− 5i 10 | 0

]
R1/(−5)→ R1−−−−−−−−−−→

[
1 −1 + i | 0

−5− 5i 10 | 0

]
(5 + 5i)R1 +R2 → R2−−−−−−−−−−−−−−−−→

[
1 −1 + i | 0
0 0 | 0

]

Hence v =

[
1− i

1

]
is an eigenvector. Then

x(1) =

[
1− i

1

]
e(1+5i)t

=

([
1
1

]
− i
[
1
0

])
et(cos 5t+ i sin 5t)

= et
([

cos 5t
cos 5t

]
+

[
sin 5t

0

])
+ iet

([
sin 5t
sin 5t

]
−
[
cos 5t

0

])
Looking at the real and imaginary parts of the solution, we find that

y(1) =

[
et cos 5t+ et sin 5t

et cos 5t

]
, y(2) =

[
et sin 5t− et cos 5t

et sin 5t

]
are solutions. Since λ1 6= λ2, the solutions x(1) and x(2) are linearly independent.
Hence y(1) and y(2) are linearly independent. All solutions of the system are x =
c1y

(1) + c2y
(2) with c1, c2 ∈ R.
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