MATH 219

Fall 2020
Lecture 12
Lecture notes by Özgür Kişisel
Content: Nonhomogenous linear systems (variation of parameters only).
Suggested Problems: (Boyce, Di Prima, 9th edition)
§7.9: $2,5,7,10,11,13$

1 Variation of Parameters

In the previous lecture, we outlined a method to solve any constant coefficient homogenous linear system. Suppose now that we have a nonhomogenous linear system:

$$
\mathbf{x}^{\prime}=A(t) \mathbf{x}+\mathbf{b}
$$

Recall that a fundamental matrix $\Psi(t)$ is any matrix satisfying

$$
\begin{gathered}
\frac{d \Psi}{d t}=A \Psi \\
\operatorname{det}(\Psi) \neq 0 .
\end{gathered}
$$

Provided that we can find such a matrix $\Psi(t)$, we can write down all solutions of the homogenous system $\mathbf{x}^{\prime}=A \mathbf{x}$ as

$$
\mathbf{x}=\Psi(t) \mathbf{c}
$$

where \mathbf{c} is a vector of constants. In particular if A is a constant matrix, then $e^{A t}$ or $P e^{J t}$ that were found in the previous lecture are fundamental matrices.

We will use a method called variation of parameters in order to solve the nonhomogenous system. The idea of variation of parameters is to replace the constant vector \mathbf{c} in the formula $\mathbf{x}=\Psi(t) \mathbf{c}$ by a nonconstant vector $\mathbf{v}(t)$ and hope that we can extract a solution of the nonhomogenous system of the form $\Psi(t) \mathbf{v}(t)$. In fact,

Theorem 1.1 All solutions of $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ are of the form $\mathbf{x}=\Psi(t) \mathbf{v}(t)$ where $\mathbf{v}(t)=\int \Psi^{-1}(t) \mathbf{b}(t) d t$.

Proof: Plug $\mathbf{x}=\Psi(t) \mathbf{v}$ into the differential equation and use product rule to differentiate:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\frac{d \Psi}{d t} \mathbf{v}+\Psi \frac{d \mathbf{v}}{d t} \\
& =A \Psi \mathbf{v}+\Psi \frac{d \mathbf{v}}{d t}
\end{aligned}
$$

We want the right hand side of this equation to be equal to $A \mathbf{x}+\mathbf{b}$, namely to $A \Psi \mathbf{v}+\mathbf{b}$. This equality holds if and only if

$$
\begin{array}{r}
\Psi \frac{d \mathbf{v}}{d t}=\mathbf{b} \\
\frac{d \mathbf{v}}{d t}=\Psi^{-1} \mathbf{b} \\
\mathbf{v}=\int \Psi^{-1} \mathbf{b} d t
\end{array}
$$

Therefore the expression $\mathbf{x}=\Psi \int \Psi^{-1} \mathbf{b} d t$ in the statement is really a solution. How can we be sure that there are no other solutions? We can write the indefinite integral above as $\int=\int_{0}^{t}+\mathbf{c}$ where \mathbf{c} is a vector of constants. Then the solutions obtained above are of the form $\mathbf{x}=\Psi \mathbf{c}+\Psi \int_{0}^{t} \Psi^{-1}(\tau) \mathbf{b}(\tau) d \tau$. Then

$$
\mathbf{x}_{p}=\Psi \int_{0}^{t} \Psi^{-1}(\tau) \mathbf{b}(\tau) d \tau
$$

is a particular solution of the nonhomogenous system. If \mathbf{x} is any other solution, then by the principle of superposition $\mathbf{x}-\mathbf{x}_{p}$ must be a solution of the corresponding homogenous system, therefore it must be of the form $\Psi \mathbf{c}$. This proves the claim.

Example 1.1 Solve the system $\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]+\left[\begin{array}{c}e^{2 t} \\ t\end{array}\right]$.

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 3 \\
0 & 1-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)
$$

Therefore the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=1$. Let us find the eigenvectors for λ_{1} :

$$
\begin{array}{r}
{\left[\begin{array}{cc:c}
0 & 3 & 0 \\
0 & -1 & 0
\end{array}\right] \xrightarrow{R_{1} / 3 \rightarrow R_{1}}\left[\begin{array}{cc:c}
0 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]} \\
\xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ll:l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array}
$$

So the eigenvectors are of the form $k\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Next, let us find the eigenvectors for λ_{2}. The matrix

$$
\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

is already in row echelon form. So the eigenvectors are of the form $k\left[\begin{array}{c}-3 \\ 1\end{array}\right]$. Therefore we can write down two linearly independent solutions $\mathbf{x}^{(1)}=\left[\begin{array}{c}e^{2 t} \\ 0\end{array}\right]$ and $\mathbf{x}^{(2)}=$ $\left[\begin{array}{c}-3 e^{t} \\ e^{t}\end{array}\right]$. So a fundamental matrix is

$$
\Psi(t)=\left[\begin{array}{cc}
e^{2 t} & -3 e^{t} \\
0 & e^{t}
\end{array}\right]
$$

Its inverse can be easily computed to be $\Psi^{-1}=\left[\begin{array}{cc}e^{-2 t} & 3 e^{-2 t} \\ 0 & e^{-t}\end{array}\right]$. Now use the formula $\mathbf{v}=\int \Psi^{-1} \mathbf{b} d t:$

$$
\begin{aligned}
\mathbf{v} & =\int\left[\begin{array}{cc}
e^{-2 t} & 3 e^{-2 t} \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{c}
e^{2 t} \\
t
\end{array}\right] d t \\
& =\left[\begin{array}{c}
\int 1+3 t e^{-2 t} d t \\
\int t e^{-t} d t
\end{array}\right] \\
& =\left[\begin{array}{c}
t-\frac{3}{2} t e^{-2 t}-\frac{3}{4} e^{-2 t}+c_{1} \\
-t e^{-t}-e^{-t}+c_{2}
\end{array}\right]
\end{aligned}
$$

(The integrals above can be found by employing integration by parts.) Finally we can find the general solution for \mathbf{x} :

$$
\begin{aligned}
\mathbf{x} & =\Psi \mathbf{v} \\
& =\left[\begin{array}{cc}
e^{2 t} & -3 e^{t} \\
0 & e^{t}
\end{array}\right]\left[\begin{array}{c}
t-\frac{3}{2} t e^{-2 t}-\frac{3}{4} e^{-2 t} \\
-t e^{-t}-e^{-t}
\end{array}\right]+\left[\begin{array}{cc}
e^{2 t} & -3 e^{t} \\
0 & e^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
t e^{2 t}+\frac{3}{2} t+\frac{9}{4} \\
-t-1
\end{array}\right]+c_{1}\left[\begin{array}{c}
e^{2 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-3 e^{t} \\
e^{t}
\end{array}\right]
\end{aligned}
$$

where $c_{1}, c_{2} \in \mathbb{R}$ are arbitrary constants.
Example 1.2 Consider the system

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]
$$

where a, b, c, d, k_{1}, k_{2} are constants. Suppose that the coefficient matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has two distinct negative real eigenvalues. Show that the limits $\lim _{t \rightarrow+\infty} x_{1}(t)$ and $\lim _{t \rightarrow+\infty} x_{2}(t)$ exist and do not depend on the initial values of x_{1} and x_{2}. Compute these limits in terms of A, k_{1} and k_{2}.
Solution: Let the eigenvalues of A be λ_{1} and λ_{2}. Since they are not equal to each other, the matrix A must be diagonalizable. So there exists an invertible matrix P (which we will not attempt to compute) such that

$$
A=P\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

Consequently, we have

$$
\Psi(t)=P e^{J t}=P\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right], \quad \Psi^{-1}(t)=\left[\begin{array}{cc}
e^{-\lambda_{1} t} & 0 \\
0 & e^{-\lambda_{2} t}
\end{array}\right] P^{-1} .
$$

In order to apply the variation of parameters formula, we will need to look at $\Psi^{-1}(t)\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]=\left[\begin{array}{cc}e^{-\lambda_{1} t} & 0 \\ 0 & e^{-\lambda_{2} t}\end{array}\right] P^{-1}\left[\begin{array}{l}k_{1} \\ k_{2}\end{array}\right]$. The last product in this formula will again give us some vector of constants. So we can write

$$
\Psi^{-1}(t)\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{cc}
e^{-\lambda_{1} t} & 0 \\
0 & e^{-\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
l_{1} \\
l_{2}
\end{array}\right]=\left[\begin{array}{l}
l_{1} e^{-\lambda_{1} t} \\
l_{2} e^{-\lambda_{2} t}
\end{array}\right]
$$

for certain constants l_{1}, l_{2}. Now, let us apply the variation of parameters formula:

$$
\begin{aligned}
\mathbf{x} & =\Psi(t) \int \Psi^{-1}(t)\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right] \\
& =\Psi(t) \int\left[\begin{array}{l}
l_{1} e^{-\lambda_{1} t} \\
l_{2} e^{-\lambda_{2} t}
\end{array}\right] d t \\
& =\Psi(t)\left(\left[\begin{array}{l}
-\frac{l_{1}}{\lambda_{1}} e^{-\lambda_{1} t} \\
-\frac{l_{2}}{\lambda_{2}} e^{-\lambda_{2} t}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right) \\
& =P\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left(\left[\begin{array}{l}
-\frac{l_{1}}{\lambda_{1}} e^{-\lambda_{1} t} \\
-\frac{l_{2}}{\lambda_{2}} e^{-\lambda_{2} t}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right) \\
& =P\left[\begin{array}{l}
-\frac{l_{1}}{\lambda_{1}} \\
-\frac{l_{2}}{\lambda_{2}}
\end{array}\right]+P\left[\begin{array}{l}
c_{1} e^{\lambda_{1} t} \\
c_{2} e^{\lambda_{2} t}
\end{array}\right] .
\end{aligned}
$$

When tends to infinity, the second summand above goes to 0 since both $e^{\lambda_{1} t}$ and $e^{\lambda_{2} t}$ are decaying exponentials by assumption. The first summand is a constant.

Therefore, the limit exists and it is independent of the initial values because it is independent of the values of the constants c_{1}, c_{2}. In order to compute the limiting values $x_{1}(\infty)$ and $x_{2}(\infty)$, notice that the derivatives of the functions x_{1} and x_{2} will tend to 0 at infinity (to see this, we may for instance use the formula for \mathbf{x} obtained above). Therefore, by considering the original system of differential equations, we must have

$$
\begin{aligned}
\mathbf{0} & =A\left[\begin{array}{l}
x_{1}(\infty) \\
x_{2}(\infty)
\end{array}\right]+\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1}(\infty) \\
x_{2}(\infty)
\end{array}\right] } & =-A^{-1}\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right] .
\end{aligned}
$$

