
MATH 219
Fall 2020

Lecture 12

Lecture notes by Özgür Kişisel

Content: Nonhomogenous linear systems (variation of parameters only).

Suggested Problems: (Boyce, Di Prima, 9th edition)

§7.9: 2, 5, 7, 10, 11, 13

1 Variation of Parameters

In the previous lecture, we outlined a method to solve any constant coefficient ho-
mogenous linear system. Suppose now that we have a nonhomogenous linear
system:

x′ = A(t)x + b.

Recall that a fundamental matrix Ψ(t) is any matrix satisfying

dΨ

dt
= AΨ

det(Ψ) 6= 0.

Provided that we can find such a matrix Ψ(t), we can write down all solutions of
the homogenous system x′ = Ax as

x = Ψ(t)c

where c is a vector of constants. In particular if A is a constant matrix, then eAt or
PeJt that were found in the previous lecture are fundamental matrices.

We will use a method called variation of parameters in order to solve the non-
homogenous system. The idea of variation of parameters is to replace the constant
vector c in the formula x = Ψ(t)c by a nonconstant vector v(t) and hope that we
can extract a solution of the nonhomogenous system of the form Ψ(t)v(t). In fact,

Theorem 1.1 All solutions of x′ = Ax + b are of the form x = Ψ(t)v(t) where
v(t) =

∫
Ψ−1(t)b(t)dt.

1



Proof: Plug x = Ψ(t)v into the differential equation and use product rule to differ-
entiate:

x′ =
dΨ

dt
v + Ψ

dv

dt

= AΨv + Ψ
dv

dt

We want the right hand side of this equation to be equal to Ax + b, namely to
AΨv + b. This equality holds if and only if

Ψ
dv

dt
= b

dv

dt
= Ψ−1b

v =

∫
Ψ−1bdt

Therefore the expression x = Ψ
∫

Ψ−1bdt in the statement is really a solution. How
can we be sure that there are no other solutions? We can write the indefinite integral
above as

∫
=
∫ t
0

+c where c is a vector of constants. Then the solutions obtained

above are of the form x = Ψc + Ψ
∫ t
0

Ψ−1(τ)b(τ)dτ . Then

xp = Ψ

∫ t

0

Ψ−1(τ)b(τ)dτ

is a particular solution of the nonhomogenous system. If x is any other solution,
then by the principle of superposition x−xp must be a solution of the corresponding
homogenous system, therefore it must be of the form Ψc. This proves the claim. �

Example 1.1 Solve the system x′ =

[
2 3
0 1

]
+

[
e2t

t

]
.

det(A− λI) =

∣∣∣∣2− λ 3
0 1− λ

∣∣∣∣ = (2− λ)(1− λ).

Therefore the eigenvalues are λ1 = 2 and λ2 = 1. Let us find the eigenvectors for
λ1: [

0 3 | 0
0 −1 | 0

]
R1/3→ R1−−−−−−−→

[
0 1 | 0
0 −1 | 0

]
R1 +R2 → R2−−−−−−−−−−→

[
0 1 | 0
0 0 | 0

]
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So the eigenvectors are of the form k

[
1
0

]
. Next, let us find the eigenvectors for λ2.

The matrix [
1 3 | 0
0 0 | 0

]
is already in row echelon form. So the eigenvectors are of the form k

[
−3
1

]
. There-

fore we can write down two linearly independent solutions x(1) =

[
e2t

0

]
and x(2) =[

−3et

et

]
. So a fundamental matrix is

Ψ(t) =

[
e2t −3et

0 et

]
Its inverse can be easily computed to be Ψ−1 =

[
e−2t 3e−2t

0 e−t

]
. Now use the formula

v =
∫

Ψ−1bdt:

v =

∫ [
e−2t 3e−2t

0 e−t

] [
e2t

t

]
dt

=

[∫
1 + 3te−2tdt∫
te−tdt

]
=

[
t− 3

2
te−2t − 3

4
e−2t + c1

−te−t − e−t + c2

]
(The integrals above can be found by employing integration by parts.) Finally we
can find the general solution for x:

x = Ψv

=

[
e2t −3et

0 et

] [
t− 3

2
te−2t − 3

4
e−2t

−te−t − e−t
]

+

[
e2t −3et

0 et

] [
c1
c2

]
=

[
te2t + 3

2
t+ 9

4

−t− 1

]
+ c1

[
e2t

0

]
+ c2

[
−3et

et

]
where c1, c2 ∈ R are arbitrary constants.

Example 1.2 Consider the system[
x1
x2

]′
=

[
a b
c d

] [
x1
x2

]
+

[
k1
k2

]
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where a, b, c, d, k1, k2 are constants. Suppose that the coefficient matrix A =

[
a b
c d

]
has two distinct negative real eigenvalues. Show that the limits limt→+∞ x1(t) and
limt→+∞ x2(t) exist and do not depend on the initial values of x1 and x2. Compute
these limits in terms of A, k1 and k2.

Solution: Let the eigenvalues of A be λ1 and λ2. Since they are not equal to each
other, the matrix A must be diagonalizable. So there exists an invertible matrix P
(which we will not attempt to compute) such that

A = P

[
λ1 0
0 λ2

]
.

Consequently, we have

Ψ(t) = PeJt = P

[
eλ1t 0
0 eλ2t

]
, Ψ−1(t) =

[
e−λ1t 0

0 e−λ2t

]
P−1.

In order to apply the variation of parameters formula, we will need to look at

Ψ−1(t)

[
k1
k2

]
=

[
e−λ1t 0

0 e−λ2t

]
P−1

[
k1
k2

]
. The last product in this formula will again

give us some vector of constants. So we can write

Ψ−1(t)

[
k1
k2

]
=

[
e−λ1t 0

0 e−λ2t

] [
l1
l2

]
=

[
l1e
−λ1t

l2e
−λ2t

]
for certain constants l1, l2. Now, let us apply the variation of parameters formula:

x = Ψ(t)

∫
Ψ−1(t)

[
k1
k2

]
= Ψ(t)

∫ [
l1e
−λ1t

l2e
−λ2t

]
dt

= Ψ(t)

([
− l1
λ1
e−λ1t

− l2
λ2
e−λ2t

]
+

[
c1
c2

])
= P

[
eλ1t 0
0 eλ2t

]([
− l1
λ1
e−λ1t

− l2
λ2
e−λ2t

]
+

[
c1
c2

])
= P

[
− l1
λ1

− l2
λ2

]
+ P

[
c1e

λ1t

c2e
λ2t

]
.

When t tends to infinity, the second summand above goes to 0 since both eλ1t and
eλ2t are decaying exponentials by assumption. The first summand is a constant.
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Therefore, the limit exists and it is independent of the initial values because it is
independent of the values of the constants c1, c2. In order to compute the limiting
values x1(∞) and x2(∞), notice that the derivatives of the functions x1 and x2 will
tend to 0 at infinity (to see this, we may for instance use the formula for x obtained
above). Therefore, by considering the original system of differential equations, we
must have

0 = A

[
x1(∞)
x2(∞)

]
+

[
k1
k2

]
[
x1(∞)
x2(∞)

]
= −A−1

[
k1
k2

]
.

5


