MATH 219

Fall 2020

Lecture 12

Lecture notes by Özgür Kişisel

Content: Nonhomogenous linear systems (variation of parameters only).

Suggested Problems: (Boyce, Di Prima, 9th edition)

§7.9: 2, 5, 7, 10, 11, 13

1 Variation of Parameters

In the previous lecture, we outlined a method to solve any constant coefficient homogenous linear system. Suppose now that we have a **nonhomogenous** linear system:

$$\mathbf{x}' = A(t)\mathbf{x} + \mathbf{b}$$

Recall that a fundamental matrix $\Psi(t)$ is any matrix satisfying

$$\frac{d\Psi}{dt} = A\Psi$$
$$\det(\Psi) \neq 0.$$

Provided that we can find such a matrix $\Psi(t)$, we can write down all solutions of the homogenous system $\mathbf{x}' = A\mathbf{x}$ as

$$\mathbf{x} = \Psi(t)\mathbf{c}$$

where **c** is a vector of constants. In particular if A is a constant matrix, then e^{At} or Pe^{Jt} that were found in the previous lecture are fundamental matrices.

We will use a method called **variation of parameters** in order to solve the nonhomogenous system. The idea of variation of parameters is to replace the constant vector \mathbf{c} in the formula $\mathbf{x} = \Psi(t)\mathbf{c}$ by a nonconstant vector $\mathbf{v}(t)$ and hope that we can extract a solution of the nonhomogenous system of the form $\Psi(t)\mathbf{v}(t)$. In fact,

Theorem 1.1 All solutions of $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ are of the form $\mathbf{x} = \Psi(t)\mathbf{v}(t)$ where $\mathbf{v}(t) = \int \Psi^{-1}(t)\mathbf{b}(t)dt$.

Proof: Plug $\mathbf{x} = \Psi(t)\mathbf{v}$ into the differential equation and use product rule to differentiate:

$$\mathbf{x}' = \frac{d\Psi}{dt}\mathbf{v} + \Psi\frac{d\mathbf{v}}{dt}$$
$$= A\Psi\mathbf{v} + \Psi\frac{d\mathbf{v}}{dt}$$

We want the right hand side of this equation to be equal to $A\mathbf{x} + \mathbf{b}$, namely to $A\Psi\mathbf{v} + \mathbf{b}$. This equality holds if and only if

$$\Psi \frac{d\mathbf{v}}{dt} = \mathbf{b}$$
$$\frac{d\mathbf{v}}{dt} = \Psi^{-1}\mathbf{b}$$
$$\mathbf{v} = \int \Psi^{-1}\mathbf{b}dt$$

Therefore the expression $\mathbf{x} = \Psi \int \Psi^{-1} \mathbf{b} dt$ in the statement is really a solution. How can we be sure that there are no other solutions? We can write the indefinite integral above as $\int = \int_0^t +\mathbf{c}$ where \mathbf{c} is a vector of constants. Then the solutions obtained above are of the form $\mathbf{x} = \Psi \mathbf{c} + \Psi \int_0^t \Psi^{-1}(\tau) \mathbf{b}(\tau) d\tau$. Then

$$\mathbf{x}_p = \Psi \int_0^t \Psi^{-1}(\tau) \mathbf{b}(\tau) d\tau$$

is a particular solution of the nonhomogenous system. If \mathbf{x} is any other solution, then by the principle of superposition $\mathbf{x} - \mathbf{x}_p$ must be a solution of the corresponding homogenous system, therefore it must be of the form $\Psi \mathbf{c}$. This proves the claim. \Box

Example 1.1 Solve the system $\mathbf{x}' = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} e^{2t} \\ t \end{bmatrix}$.

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 3 \\ 0 & 1 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda).$$

Therefore the eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 1$. Let us find the eigenvectors for λ_1 :

$$\begin{bmatrix} 0 & 3 & | & 0 \\ 0 & -1 & | & 0 \end{bmatrix} \xrightarrow{R_1/3 \to R_1} \begin{bmatrix} 0 & 1 & | & 0 \\ 0 & -1 & | & 0 \end{bmatrix}$$
$$\xrightarrow{R_1 + R_2 \to R_2} \begin{bmatrix} 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

So the eigenvectors are of the form $k \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Next, let us find the eigenvectors for λ_2 . The matrix $\begin{bmatrix} 1 & 3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$

is already in row echelon form. So the eigenvectors are of the form $k \begin{bmatrix} -3\\1 \end{bmatrix}$. Therefore we can write down two linearly independent solutions $\mathbf{x}^{(1)} = \begin{bmatrix} e^{2t}\\0 \end{bmatrix}$ and $\mathbf{x}^{(2)} = \begin{bmatrix} -3e^t\\e^t \end{bmatrix}$. So a fundamental matrix is

$$\Psi(t) = \begin{bmatrix} e^{2t} & -3e^t \\ 0 & e^t \end{bmatrix}$$

Its inverse can be easily computed to be $\Psi^{-1} = \begin{bmatrix} e^{-2t} & 3e^{-2t} \\ 0 & e^{-t} \end{bmatrix}$. Now use the formula $\mathbf{v} = \int \Psi^{-1} \mathbf{b} dt$:

$$\mathbf{v} = \int \begin{bmatrix} e^{-2t} & 3e^{-2t} \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} e^{2t} \\ t \end{bmatrix} dt$$
$$= \begin{bmatrix} \int 1 + 3te^{-2t} dt \\ \int te^{-t} dt \end{bmatrix}$$
$$= \begin{bmatrix} t - \frac{3}{2}te^{-2t} - \frac{3}{4}e^{-2t} + c_1 \\ -te^{-t} - e^{-t} + c_2 \end{bmatrix}$$

(The integrals above can be found by employing integration by parts.) Finally we can find the general solution for \mathbf{x} :

$$\mathbf{x} = \Psi \mathbf{v} = \begin{bmatrix} e^{2t} & -3e^t \\ 0 & e^t \end{bmatrix} \begin{bmatrix} t - \frac{3}{2}te^{-2t} - \frac{3}{4}e^{-2t} \\ -te^{-t} - e^{-t} \end{bmatrix} + \begin{bmatrix} e^{2t} & -3e^t \\ 0 & e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} te^{2t} + \frac{3}{2}t + \frac{9}{4} \\ -t - 1 \end{bmatrix} + c_1 \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -3e^t \\ e^t \end{bmatrix}$$

where $c_1, c_2 \in \mathbb{R}$ are arbitrary constants.

Example 1.2 Consider the system

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

where a, b, c, d, k_1, k_2 are constants. Suppose that the coefficient matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has two distinct negative real eigenvalues. Show that the limits $\lim_{t \to +\infty} x_1(t)$ and $\lim_{t \to +\infty} x_2(t)$ exist and do not depend on the initial values of x_1 and x_2 . Compute these limits in terms of A, k_1 and k_2 .

Solution: Let the eigenvalues of A be λ_1 and λ_2 . Since they are not equal to each other, the matrix A must be diagonalizable. So there exists an invertible matrix P (which we will not attempt to compute) such that

$$A = P \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

Consequently, we have

$$\Psi(t) = Pe^{Jt} = P\begin{bmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{bmatrix}, \quad \Psi^{-1}(t) = \begin{bmatrix} e^{-\lambda_1 t} & 0\\ 0 & e^{-\lambda_2 t} \end{bmatrix} P^{-1}.$$

In order to apply the variation of parameters formula, we will need to look at $\Psi^{-1}(t) \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} e^{-\lambda_1 t} & 0 \\ 0 & e^{-\lambda_2 t} \end{bmatrix} P^{-1} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$. The last product in this formula will again give us some vector of constants. So we can write

$$\Psi^{-1}(t) \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} e^{-\lambda_1 t} & 0 \\ 0 & e^{-\lambda_2 t} \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} l_1 e^{-\lambda_1 t} \\ l_2 e^{-\lambda_2 t} \end{bmatrix}$$

for certain constants l_1, l_2 . Now, let us apply the variation of parameters formula:

$$\begin{aligned} \mathbf{x} &= \Psi(t) \int \Psi^{-1}(t) \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \\ &= \Psi(t) \int \begin{bmatrix} l_1 e^{-\lambda_1 t} \\ l_2 e^{-\lambda_2 t} \end{bmatrix} dt \\ &= \Psi(t) \left(\begin{bmatrix} -\frac{l_1}{\lambda_1} e^{-\lambda_1 t} \\ -\frac{l_2}{\lambda_2} e^{-\lambda_2 t} \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \right) \\ &= P \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \left(\begin{bmatrix} -\frac{l_1}{\lambda_1} e^{-\lambda_1 t} \\ -\frac{l_2}{\lambda_2} e^{-\lambda_2 t} \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \right) \\ &= P \begin{bmatrix} -\frac{l_1}{\lambda_1} \\ -\frac{l_2}{\lambda_2} \end{bmatrix} + P \begin{bmatrix} c_1 e^{\lambda_1 t} \\ c_2 e^{\lambda_2 t} \end{bmatrix}. \end{aligned}$$

When t tends to infinity, the second summand above goes to 0 since both $e^{\lambda_1 t}$ and $e^{\lambda_2 t}$ are decaying exponentials by assumption. The first summand is a constant.

Therefore, the limit exists and it is independent of the initial values because it is independent of the values of the constants c_1, c_2 . In order to compute the limiting values $x_1(\infty)$ and $x_2(\infty)$, notice that the derivatives of the functions x_1 and x_2 will tend to 0 at infinity (to see this, we may for instance use the formula for \mathbf{x} obtained above). Therefore, by considering the original system of differential equations, we must have

$$\mathbf{0} = A \begin{bmatrix} x_1(\infty) \\ x_2(\infty) \end{bmatrix} + \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$\begin{bmatrix} x_1(\infty) \\ x_2(\infty) \end{bmatrix} = -A^{-1} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}.$$