
MATH 219
Fall 2020

Lecture 18

Lecture notes by Özgür Kişisel

Content: Review of power series. Series solutions near an ordinary point.

Suggested Problems: (Boyce, Di Prima, 9th edition)

§5.1: 4,7,13,16,21,26

§5.2: 1,4,8,12,20,21

§5.3: 2,7,10,12,22,23

Let us assume that we have a second order linear differential equation whose coeffi-
cients are not necessarily constant:

P (x)y′′ +Q(x)y′ +R(x)y = F (x).

Previously discussed methods that use the characteristic equation are useless for
such an equation unless Q(x)/P (x) and R(x)/P (x) are both constant. Indeed, it is
a difficult to matter to find explicit solutions of such an equation. Instead, we will
try to find the Taylor series expansions of the solutions around a given point x0, of
the form

y =
∞∑
n=0

an(x− x0)n,

and try to determine what the coefficients an should be. The advantage of this
method is that it is widely applicable and straightforward: It does not require any
“tricks” that differ from one equation to another. On the other hand there are some
disadvantages: First, it will not be easy to determine all an’s at once. Instead, one
determines each an in terms of the previous values of the sequence recursively, but
it is in general difficult to find a closed form expression for an in terms of n. Second,
the solution obtained may converge fairly slowly and even more so when x moves
away from x0. Furthermore, there often is a limitation on how far we can move away
from x0; most of the time the series will have a finite radius of convergence and will
not be usable outside this range.
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We will start by reviewing power series and their properties. Readers who are
already comfortable with these notions may prefer to skip to section 2 and look at
section 1 whenever necessary.

1 Review of Power Series

1.1 Definition, Region of Convergence

Definition 1.1 A power series centered at x0 is an infinite series
∞∑
n=0

an(x− x0)n.

Note that there are no negative power terms in the series and all terms are centered
around x0. By convention, we assume that (x − x0)0 = 1 for all x. A power series
typically converges for certain values of x and diverges for others. There is a certain
pattern for the set of values of x for which the series converges. This pattern is valid
for all power series:

Theorem 1.1 (Existence of Radius of Convergence) Say
∑∞

n=0 an(x − x0)
n is a

power series centered at x0. Then there exists a nonnegative real number ρ (the
cases ρ = 0 and ρ =∞ are also allowed) such that

1. The series converges absolutely for all x such that |x− x0| < ρ,

2. The series diverges for all x such that |x− x0| > ρ.

The number ρ is called the radius of convergence of the series. Basically anything
can happen on the boundary between these two cases, which is the set |x− x0| = ρ,
namely the situation depends on the particular example. The interval of conver-
gence of the series is the set of all x for which the series converges. By the theorem
above, this set is an open, closed or half open interval centered around x0.

Example 1.1 Find the center, coefficients an, radius and interval of convergence
of the series

∞∑
n=1

(2x+ 1)n

n2
.
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Solution: Rewrite the series in the form

∞∑
n=1

(2x+ 1)n

n2
=
∞∑
n=1

2n(x− (−1/2))n

n2
.

Therefore the center x0 of the series is −1/2 and

an =
2n

n2
.

In order to find the radius of convergence, apply the ratio test: The series converges
absolutely if

lim
n→∞

|2x+ 1|n+1/(n+ 1)2

|2x+ 1|n/n2
< 1

|2x+ 1| < 1

x ∈ (−1, 0).

Similarly, the series diverges if |2x+ 1| > 1. We need to check the endpoints of the
interval (−1, 0) separately. If x = 0 then

∞∑
n=1

1

n2

converges by the p-test. Similarly, for x = −1 , the series

∞∑
n=1

(−1)n

n2

converges since it absolutely converges. Therefore, the radius of the power series is
1/2 and the interval of convergence is [−1, 0].

1.2 Operations on Power Series

Suppose that
∑∞

n=0 an(x − x0)n converges to f(x) and
∑∞

n=0 bn(x − x0)n converges
to g(x) for |x− x0| < ρ. Then the following statements hold for |x− x0| < ρ:

1. f(x) + g(x) =
∑∞

n=0(an + bn)(x− x0)n
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2. f(x)− g(x) =
∑∞

n=0(an − bn)(x− x0)n

3. f(x)g(x) =
∑∞

n=0 cn(x− x0)n where cn =
∑n

k=0 akbn−k.

4. f ′(x) =
∑∞

n=1 nan(x− x0)n−1

5.
∫
f(x)dx = C +

∑∞
n=0

anxn+1

n+1

These statements will not be proven here, but they will be used freely.

Definition 1.2 A function f(x) is said to be analytic at a point x0 if there exists
an open neighborhood of x0 in which the Taylor series of f(x) converges to f(x).

Remark 1.1 By property 4 above, if a function is analytic at a point, then it is con-
tinuous there, furthermore it has derivatives of all orders. The converse is not true.
There exist functions f(x) having derivatives of all orders but yet f(x) is not equal
to its Taylor series in any open neighborhood of x0. One example is the function
having values e−1/x for x > 0 and value 0 for x ≤ 0. However, polynomials, trigono-
metric functions and exponentials are analytic everywhere. Rational functions are
analytic at their points of continuity. Products and sums of analytic functions are
analytic.

Example 1.2 Check that (ex)′ = ex by looking at the Taylor series of ex.

Solution: Recall that the Taylor series of ex is

ex =
∞∑
n=0

xn

n!
.

Differentiate this series term by term:

(ex)′ =
∞∑
n=1

nxn−1

n!

=
∞∑
n=1

xn−1

(n− 1)!

=
∞∑

m=0

xm

m!

= ex.
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In the third step, we substituted m = n − 1. This type of “index shifting” is pretty
common when one deals with power series, so it will be considered in the next sub-
section.

1.3 Index Shifting

Suppose we have an infinite series

∞∑
n=l

anx
n−k.

Put m = n− k. Then the series takes the form

∞∑
m=l−k

am+kx
m.

It is customary to use n for the dummy index again and write

∞∑
n=l−k

an+kx
n.

Such a notational change in the index, which actually does not change anything
about the series, is called an index shift. Such shifts are especially useful when
one needs to compare two power series term by term.

Example 1.3 If the equality

∞∑
n=2

n(n− 1)

2
anx

n−2 =
∞∑
n=0

anx
n

holds for every x and a0 = 1, a1 = 0, then find an for each n.

Solution: Shift index in the first sum such that the main term contains xn rather
than xn−2:

∞∑
n=0

(n+ 2)(n+ 1)

2
an+2x

n =
∞∑
n=0

anx
n.
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In order for the equality to hold for all x, the coefficients of xn on both sides must
be equal. Therefore we obtain the recursive relation

(n+ 2)(n+ 1)

2
an+2 = an

for all n ≥ 0. Using a0 = 1 and a1 = 0 let us compute the first few terms:

a2 =
2

2 · 1
a0 = 1,

a3 =
2

3 · 2
a1 = 0,

a4 =
2

4 · 3
a2 =

22

4!
,

a5 =
2

5 · 4
a3 = 0,

a6 =
2

6 · 5
a4 =

23

6!
,

. . .

It is clear that an = 0 for all odd values of n. It is reasonable to guess that a2k =
2k/(2k)!. Let us prove this by induction. It is true for n = 2k = 2. Assume it holds
up to n = 2k and check for n = 2k + 2:

a2k+2 =
2

(2k + 2)(2k + 1)
a2k

=
2

(2k + 2)(2k + 1)

2k

(2k)!

=
2k+1

(2k + 2)!
.

So, our guess was correct. Therefore the series is

∞∑
k=0

2kx2k

(2k)!
.

We note in passing that the series can be rewritten in terms of familiar functions:

∞∑
k=0

2kx2k

(2k)!
=
∞∑
k=0

(
√

2x)2k

(2k)!
=
e
√
2x + e−

√
2x

2
= cosh(

√
2x).
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2 Solving ODE’s Near an Ordinary Point

Suppose that we have an ODE of the form

P (x)y′′ +Q(x)y′ +R(x)y = 0.

The equation can be rewritten as

y′′ +
Q(x)

P (x)
y′ +

R(x)

P (x)
y = 0.

Definition 2.1 We say that x0 is an ordinary point for the ODE, if the functions
Q(x)/P (x) and R(x)/P (x) are both analytic in a neighborhood of x0. Otherwise, x0
is called a singular point.

Around an ordinary point, the strategy for finding power series solutions is straight-
forward: Substitute y =

∑∞
n=0 an(x − x0)

n and solve for an in terms of a0 and
a1.

Example 2.1 Solve the ODE y′′ − xy = 0 around x0 = 0.

Solution: The functions Q(x)/P (x) = 0 and R(x)/P (x) = −x are analytic at all
points. In particular, x0 is an ordinary point. Set

y =
∞∑
n=0

anx
n

and put it in the equation. First of all,

y′ =
∞∑
n=1

nanx
n−1, y =

∞∑
n=2

n(n− 1)anx
n−2.

Now, write the equation and modify until the general terms of all summands have
the same power of x in their general terms:

∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=0

anx
n = 0

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n+1 = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

an−1x
n = 0
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The coefficient of x0 on the left hand side is 2a2. Hence 2a2 = 0, therefore a2 = 0.

By looking at the coefficient of xn on both sides for n ≥ 1 we get

(n+ 2)(n+ 1)an+2 − an−1 = 0

an+2 =
an−1

(n+ 2)(n+ 1)

Since a2 = 0, we get a5 = a8 = a11 = . . . = 0. Starting from a0, we have

a3 =
a0

3 · 2
, a6 =

a0
6 · 5 · 3 · 2

, a9 =
a0

9 · 8 · 6 · 5 · 3 · 2
, . . .

Similarly, starting from a1 we get

a4 =
a1

4 · 3
, a7 =

a1
7 · 6 · 4 · 3

, a10 =
a1

10 · 9 · 7 · 6 · 4 · 3
, . . .

Therefore

y =
∞∑
n=0

anx
n

= a0

(
1 +

x3

3 · 2
+

x6

6 · 5 · 3 · 2
+

x9

9 · 8 · 6 · 5 · 3 · 2
+ . . .

)
+ a1

(
x+

x4

4 · 3
+

x7

7 · 6 · 4 · 3
+

x10

10 · 9 · 7 · 6 · 4 · 3
+ . . .

)
One can check by ratio test that this series converges for all values of x ∈ R. Note
that the solution is a linear combination of two solutions y1, y2. We can check that
y1 and y2 are linearly independent as follows: Suppose c1y1 + c2y2 = 0. Evaluate at
0 and use y1(0) = 1, y2(0) = 0 in order to get

c1 = 0

Now c2y2 = 0. But y2 is not identically 0, therefore c2 = 0. Hence y1 and y2 are
linearly independent.

Example 2.2 Find the first 5 nonzero terms of the power series solution of the
initial value problem

(1− x)y′′ + xy′ − y = 0, y(0) = −3, y′(0) = 2
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around x0 = 0.

Solution: The functions Q(x)/P (x) = x/(1− x) and R(x)/P (x) = −1/(1− x are
both analytic at x0 = 0. Therefore x0 = 0 is an ordinary point. Set y =

∑∞
n=0 anx

n.
Then

y′ =
∞∑
n=1

nanx
n−1, y =

∞∑
n=2

n(n− 1)anx
n−2.

We have

(1− x)

(
∞∑
n=2

n(n− 1)anx
n−2

)
+ x

(
∞∑
n=1

nanx
n−1

)
−
∞∑
n=0

anx
n = 0

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0.

Notice that y(0) = a0 = −3 and y′(0) = a1 = 2. Looking at the coefficients of x0 on
both sides, we find

2a2 + a0 = 0⇒ a2 = 3/2.

Now look at the coefficients of xn on both sides for n ≥ 1 :

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + (n− 1)an = 0

an+2 =
n

n+ 2
an+1 −

n− 1

(n+ 1)(n+ 2)
an

We get

a3 =
1

3
a2 −

0

2 · 3
a1 =

1

2

a4 =
2

4
a3 −

1

3 · 4
a2 =

1

8

a5 =
3

5
a4 −

2

4 · 5
a3 =

1

40

Therefore

y = −3 + 2x+
3x2

2
+
x3

2
+
x4

8
+
x5

40
+ . . .
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How can we guarantee that this method always works when x0 is an ordinary point?
First, notice that if y =

∑∞
n=0 an(x− x0)n, then

y(n)(x) = n!an + (n+ 1)n . . . 2an+1(x− x0) + . . .

y(n)(x0) = n!an

an =
y(n)(x0)

n!
.

Therefore, given the initial conditions y(0) = a0 and y′(0) = a1, we can solve for
all an in terms of a0 and a1 if and only if we can solve for all y(n)(x0) recursively
in terms of y(0) and y′(0). We can use the equation to solve for y(n)(x0) as follows:
Since P (x)y′′ +Q(x)y′ +R(x)y = 0, we have

y′′(x0) = −Q(x0)

P (x0)
y′(x0)−

R(x0)

P (x0)
y(x0).

We already know y′(x0) and y(x0). Furthermore, Q(x0)/P (x0) and R(x0)/P (x0) can
be computed since x0 is an ordinary point. Hence we can find y′′(x0).

The other values y(n)(x0) can be recursively found in a similar manner. For instance,
in order to find y′′′(x0), first differentiate the ODE once and leave the y′′′ term alone.
From the resulting equation one can solve for y′′′(x0). For this computation and the

computation of the higher derivatives of y at x0 one needs the fact that Q(x)
P (x)

and
R(x)
P (x)

have derivatives of all orders at x0, which is a consequence of their analyticity.

We saw that we can find a power series solution y =
∑∞

n=0 an(x− x0)n. Of course,
this solution would be useless if it did not converge in an open set containing x0.
We quote the following theorem about the radius of convergence of such a solution
without proof. This theorem guarantees the convergence of the series in such a
neighborhood:

Theorem 2.1 Let x0 be an ordinary point and let x1 be the nearest singular point to
x0. Let ρ be the distance from x0 to x1 (take ρ =∞ if there are no singular points).
Then the radius of convergence of the power series solution constructed above is at
least ρ.

Now, it is a fact that analytic functions cannot have infinitely many singular points
which converge towards an ordinary point (this weird phenomenon could occur if
we relaxed the assumption of analyticity). For this reason, the ρ in the theorem will
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always be positive. The last thing that one must check is that the series obtained
is actually a solution of the ODE. This again requires the analyticity of Q(x)/P (x)
and R(x)/P (x) which implies that the series computations agree with what one
would get by computations with the original functions. This finishes the outline of
the proof that the method always works at an ordinary point.
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