
MATH 219
Fall 2020

Lecture 19

Lecture notes by Özgür Kişisel

Content: Regular singular points. Euler equations.

Suggested Problems: (Boyce, Di Prima, 9th edition)

§5.4: 7,10,16,20,26,37

1 Regular Singular Points

Suppose that we have a second order linear ODE of the form

p(x)y′′ + q(x)y′ + r(x)y = 0

Definition 1.1 A point x0 is called a regular singular point for the ODE above
if it is

� a singular point (in other words, not an ordinary point),

� the functions
(x− x0)q(x)

p(x)
and

(x− x0)2r(x)

p(x)
are analytic in a neighborhood

of x0.

Strictly speaking, the two functions above are not defined at x0 if x0 is a singular
point. However, the condition above should be interpreted as follows: The limits of
the two functions above are both finite and if we declare the value of each function
to be equal to the relevant limit, then the resulting function is analytic.

Example 1.1 Consider the ODE

x3(x− 1)y′′ + (x+ 2)y′ + 4y = 0.
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Since the functions
x+ 2

x3(x− 1)
and

4

x3(x− 1)
are both analytic at all points other

than 0 and 1, all points other than these two are ordinary points. Both 0 and 1 are
singular points. Since the functions

(x− 1)(x+ 2)

x3(x− 1)
,

(x− 1)24

x3(x− 1)

are both analytic near 1, the point 1 is a regular singular point. On the other hand,
the function

x(x+ 2)

x3(x− 1)

is not analytic at 0, so the point 0 is not a regular singular point (it is a “worse”
type of singularity).

A regular singular point is in a sense a “well-behaved” singularity and it turns out
that power series methods are useful near regular singular points. We will first
look at some of the simplest ODE’s which have regular singularities in the next
section, these are called Euler equations. Euler equations can be explicitly solved,
and their solutions will then be used as prototypes to guess the form of the power
series solutions of an arbitrary ODE with regular singular points in the next lecture.

2 Euler Equations

Definition 2.1 An equation of the form

(x− x0)2y′′ + α(x− x0)y′ + βy = 0

where α, β are constants, is called an Euler equation (or a Cauchy-Euler equa-
tion).

It is easy to check that the point x = x0 is a regular singular point for an Euler
equation. The two intervals x > x0 and x < x0 should be analyzed separately.
First, assume that x > x0. In order to solve an Euler equation, use the substitution
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x− x0 = et which makes sense since x− x0 is positive. Since
dx

dt
= et, we have

y′ =
dy

dx

=
dy

dt

dt

dx

= e−t
dy

dt

y′′ =
d

dx

(
dy

dx

)
=

d

dt

(
e−t

dy

dt

)
dt

dx

= −e−2tdy
dt

+ e−2t
d2y

dt2

Substitute these expressions into the ODE:

e2t
(
−e−2tdy

dt
+ e−2t

d2y

dt2

)
+ αet

(
e−t

dy

dt

)
+ βy = 0

d2y

dt2
+ (α− 1)

dy

dt
+ βy = 0

Therefore, we obtain a constant coefficient linear ODE in y and t, which can be
solved by using the characteristic equation r2 + (α − 1)r + β = 0. There are three
cases, depending on the sign of the discriminant ∆ = (α− 1)2 − 4β:

Case 1, ∆ > 0: In this case, the characteristic equation has two real, distinct roots
r1, r2. The general solution is

y = c1e
r1t + c2e

r2t

= c1(x− x0)r1 + c2(x− x0)r2

Case 2, ∆ = 0: In this case, the characteristic equation has repeated real roots,
r1 = r2 = r. The general solution is

y = c1e
rt + c2te

rt

= c1(x− x0)r + c2(ln(x− x0))(x− x0)r

= (x− x0)r(c1 + c2 ln(x− x0))
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Case 3, ∆ < 0: In this case, the roots of the characteristic equation are two complex
numbers that are conjugates of each other, namely r1 = k + il, r2 = k − il with
l 6= 0. The general solution is

y = c1e
kt cos(lt) + c2e

kt sin(lt)

= c1(x− x0)k cos(l ln(x− x0)) + c2(x− x0)k sin(l ln(x− x0))

What about the interval x < x0? This case can be handled by making the substi-
tution x − x0 = −et and repeating the same steps as above. One can easily check
that the effect of this change is replacing x− x0 by |x− x0| in each of the formulas
above. For instance, in Case 1 above, the solution becomes

y = c1|x− x0|r1 + c2|x− x0|r2

etc.
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