MATH 219

Fall 2020
Lecture 20
Lecture notes by Özgür Kişisel

Content: Series Solutions Near A Regular Singular Point
Suggested Problems: (Boyce, Di Prima, 9th edition)
§5.5: 4,10,11,12,13
Suppose that x_{0} is a regular singular point for the equation

$$
\begin{equation*}
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=0 \tag{*}
\end{equation*}
$$

Also, suppose that

$$
\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right) q(x)}{p(x)}=\alpha, \quad \lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right)^{2} r(x)}{p(x)}=\beta .
$$

Then we regard the Cauchy-Euler equation

$$
\begin{equation*}
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0 \tag{**}
\end{equation*}
$$

as being "close" to the equation $(*)$ in the sense that the first Taylor series terms of the coefficients of the two ODE's agree. We saw before how one can solve CauchyEuler equations. A reasonable guess is that if we perturb a solution of the CauchyEuler equation $(* *)$ by multiplying it with an appropriate power series, then we can obtain a solution for $(*)$. This strategy turns out to be reasonably succesful, as detailed below:

Strategy for solving an ODE near a regular singular point

- Check that x_{0} is a regular singular point and find the limits α, β above.
- Find the roots r_{1}, r_{2} of the indicial equation $r^{2}+(\alpha-1) r+\beta=0$. We will assume that the roots are real for the sake of simplicity, but the complex case is also manageable.
- Say $r_{1} \geq r_{2}$. If $r_{1}-r_{2}$ is not an integer, then one can obtain two linearly independent power series solutions for $\left(^{*}\right)$

$$
y_{1}=\left|x-x_{0}\right|^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \quad y_{2}=\left|x-x_{0}\right|^{r_{2}} \sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

- If $r_{1}-r_{2}$ is an integer, then a solution y_{1} as above still exists, but y_{2} above need not exist. Instead, usually one will need to have a logarithmic term in the second solution (we will not cover the details for such a second solution here).
- In the solutions above, the coefficients a_{0} and b_{0} will be free, so they can be taken to be 1 without loss of generality.

Example 0.1 Solve the equation $2 x^{2} y^{\prime \prime}+3 x y^{\prime}+\left(2 x^{2}-1\right) y=0$, centered at $x_{0}=0$.
Solution: The function $3 x / 2 x^{2}$ is not analytic at 0 , therefore $x_{0}=0$ is not an ordinary point. The functions $x \cdot 3 x / 2 x^{2}$ and $x^{2} \cdot\left(2 x^{2}-1\right) / 2 x^{2}$ are both analytic near 0 , so the singularity is regular. The limits of the two functions are $\alpha=3 / 2$ and $\beta=-1 / 2$ respectively.

The indicial equation is

$$
r^{2}+\frac{1}{2} r-\frac{1}{2}=0
$$

The two roots of this equation are $r_{1}=\frac{1}{2}$ and $r_{2}=-1$. Their difference is not an integer, so we should have two linearly independent solutions of the form

$$
y_{1}=|x|^{\frac{1}{2}} \sum_{n=0}^{\infty} a_{n} x^{n}, \quad y_{2}=|x|^{-1} \sum_{n=0}^{\infty} b_{n} x^{n}
$$

Let us assume from now on that $x>0$, so that we can remove the absolute values. The case $x<0$ is similar.

$$
\begin{aligned}
& y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{1}^{\prime}=\sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right) a_{n} x^{n-\frac{1}{2}} \\
& y_{1}^{\prime \prime}=\sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) a_{n} x^{n-\frac{3}{2}}
\end{aligned}
$$

Notice that the initial terms in the sums are non-constant, hence they should be still kept after taking derivatives. Putting these terms in the ODE, we get

$$
\begin{aligned}
& 2 x^{2} \sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) a_{n} x^{n-\frac{3}{2}}+3 x \sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right) a_{n} x^{n-\frac{1}{2}}+\left(2 x^{2}-1\right) \sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}}=0 \\
& \sum_{n=0}^{\infty} 2\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) a_{n} x^{n+\frac{1}{2}}+\sum_{n=0}^{\infty} 3\left(n+\frac{1}{2}\right) a_{n} x^{n+\frac{1}{2}}+\sum_{n=0}^{\infty} 2 a_{n} x^{n+\frac{5}{2}}-\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}}=0 \\
& \sum_{n=0}^{\infty} 2\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) a_{n} x^{n+\frac{1}{2}}+\sum_{n=0}^{\infty} 3\left(n+\frac{1}{2}\right) a_{n} x^{n+\frac{1}{2}}+\sum_{n=2}^{\infty} 2 a_{n-2} x^{n+\frac{1}{2}}-\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}}=0 \\
&\left(2 \cdot \frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot a_{0}+3 \cdot \frac{1}{2} \cdot a_{0}-a_{0}\right) x^{\frac{1}{2}}+\left(2 \cdot \frac{3}{2} \cdot \frac{1}{2} a_{1}+3 \cdot \frac{3}{2} a_{1}-a_{1}\right) x^{\frac{3}{2}}+ \\
& \sum_{n=2}^{\infty}\left[2\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right) a_{n}+3\left(n+\frac{1}{2}\right) a_{n}+2 a_{n-2}-a_{n}\right] x^{n+\frac{1}{2}}=0
\end{aligned}
$$

We now equate the coefficient of each power of x in the above expression to 0 . First of all, the coefficient of $x^{\frac{1}{2}}$ is 0 , therefore a_{0} is free. Next, the coefficient of $x^{\frac{3}{2}}$ shows $a_{1}=0$. The coefficient in the final summand gives, for $n \geq 2$,

$$
\left(2 n^{2}+3 n\right) a_{n}+2 a_{n-2}=0 .
$$

Therefore, we obtain the recursion relation

$$
a_{n}=-\frac{2}{2 n^{2}+3 n} a_{n-2} .
$$

We immediately get $a_{1}=a_{3}=a_{5}=\ldots=0$. The first few of the even indexed terms are

$$
a_{2}=-\frac{a_{0}}{7}, \quad a_{4}=-\frac{a_{2}}{22}=\frac{a_{0}}{154}, \quad a_{6}=-\frac{1}{45} a_{4}=-\frac{a_{0}}{6930}
$$

Taking $a_{0}=1$, we get

$$
y_{1}=x^{\frac{1}{2}}\left(1-\frac{x^{2}}{7}+\frac{x^{4}}{154}-\frac{x^{6}}{6930}+\ldots\right)
$$

We will now carry out the same steps for the second solution y_{2} :

$$
\begin{aligned}
& y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n-1} \\
& y_{2}^{\prime}=\sum_{n=0}^{\infty}(n-1) b_{n} x^{n-2} \\
& y_{2}^{\prime \prime}=\sum_{n=0}^{\infty}(n-1)(n-2) b_{n} x^{n-3}
\end{aligned}
$$

Put these terms in the ODE:

$$
\begin{array}{r}
2 x^{2} \sum_{n=0}^{\infty}(n-1)(n-2) b_{n} x^{n-3}+3 x \sum_{n=0}^{\infty}(n-1) b_{n} x^{n-2}+\left(2 x^{2}-1\right) \sum_{n=0}^{\infty} b_{n} x^{n-1}=0 \\
\sum_{n=0}^{\infty} 2(n-1)(n-2) b_{n} x^{n-1}+\sum_{n=0}^{\infty} 3(n-1) b_{n} x^{n-1}+\sum_{n=0}^{\infty} 2 b_{n} x^{n+1}-\sum_{n=0}^{\infty} b_{n} x^{n-1}=0 \\
\sum_{n=0}^{\infty} 2(n-1)(n-2) b_{n} x^{n-1}+\sum_{n=0}^{\infty} 3(n-1) b_{n} x^{n-1}+\sum_{n=2}^{\infty} 2 b_{n-2} x^{n-1}-\sum_{n=0}^{\infty} b_{n} x^{n-1}=0 \\
\left(2 \cdot(-1) \cdot(-2) b_{0}+3 \cdot(-1) b_{0}-b_{0}\right) x^{-1}+\left(2 \cdot 0 \cdot(-1) b_{1}+3 \cdot 0 \cdot b_{1}-b_{1}\right) x^{0}+ \\
\sum_{n=2}^{\infty}\left[2(n-1)(n-2) b_{n}+3(n-1) b_{n}+2 b_{n-2}-b_{n}\right] x^{n-1}=0
\end{array}
$$

Again, equate all coefficients of powers of x in the above expression to 0 . We see that b_{0} is free and $b_{1}=0$. The coefficient in the last summand gives, for $n \geq 2$,

$$
\left(2 n^{2}-3 n\right) b_{n}+2 b_{n-2}=0
$$

Therefore, the recursion relation is

$$
b_{n}=-\frac{2}{2 n^{2}-3 n} b_{n-2}
$$

We get $b_{1}=b_{3}=b_{5}=\ldots=0$. The first few even indexed terms are:

$$
b_{2}=-b_{0}, \quad b_{4}=-\frac{b_{2}}{10}=\frac{b_{0}}{10}, \quad b_{6}=-\frac{b_{4}}{27}=-\frac{b_{0}}{270}
$$

Taking $b_{0}=1$, we get

$$
y_{2}=x^{-1}\left(1-x^{2}+\frac{x^{4}}{10}-\frac{x^{6}}{270}+\ldots\right)
$$

Finally, the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

where c_{1}, c_{2} are arbitrary constants and y_{1}, y_{2} are as above.

