We already showed: $E_f sin(\delta) = X_s I_a cos(\theta)$

Note: We neglected R_a

Êf $= X_{s} \widehat{1}_{s}. C O(0) = \widehat{E}_{f}. sin(\delta)$ 90.0

We already showed: $E_f sin(\delta) = X_s I_a cos(\theta)$

Note: We neglected R_a

Write Power equation in terms of E_f

 $P = 3V_t I_a \cos(\theta)$ $= \frac{Ef.sin(8)}{X_s}$

We already showed: $E_f sin(\delta) = X_s I_a cos(\theta)$

Note: We neglected R_a //

Write Power equation in terms of E_f

 $3V_t E_f sin(\delta)$

$$P = \frac{3V_t E_f sin(\delta)}{X_s}$$

What about Torque?

Torque of a Synchronous Machine

 ω_s $3V_t E_f sin(\delta)$ $X_s \omega_s$ Mechanica speed.

Torque of a Synchronous Machine

Remember the previous weeks:

 $T = T_{max} sin(\delta)$ $T_{max} = \frac{3V_t E_f}{X_s \omega_s}$

Torque of a Synchronous Machine

Generalized Power Transfer in AC Systems

In Transmission Systems

30/34

Generalized Power Transfer in AC Systems

In Wireless Communication

Generalized Power Transfer in AC Systems

In Wave Energy Converters

Pelamis WEC Operation, Full Story

Power Flow

DC Systems:

Power flows from high potential to low potential

Power Flow

DC Systems:

Power flows from high potential to low potential

AC Systems:

8